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Bunched beam envelope equations including image effects from a cylindrical pipe
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We derive a set of differential equations for the beam envelopes of an axisymmetric, bunched beam inside
a perfectly conducting beam pipe. It is found that the beam dynamics are essentially independent of the form
of bunch distribution in the free-space situation, however, in the presence of the beam pipe this is no longer the
case. Analytic expressions involving infinite summations of Bessel functions are derived for the image poten-
tial and image fields of an ellipsoidally symmetric charge distributions in a beam pipe, in particular, the
uniform density distribution. We simulate a simple beam transport system to demonstrate the application of
these results.@S1063-651X~97!11806-2#

PACS number~s!: 29.27.Bd, 41.85.Ja, 29.27.Eg, 41.75.2i
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I. INTRODUCTION

In this paper we derive differential equations describ
the dynamics of a bunched beam’s rms envelopes. The m
contribution here is the inclusion of image effects from
cylindrical beam pipe in the beam dynamics. Also includ
are analytic expressions for the electrostatic image pote
of an ellipsoidal charge distribution in a perfectly conducti
cylinder, in particular for a uniform density ellipsoid. The
potentials are expressed as infinite summations of Be
functions, and to our knowledge, have never been publis
previously. The free-space potentials for these distributi
are already known@1,2#, thus the full electrostatic potentia
including images, may be constructed analytically.

In the bunched beam situation the image effects may s
stantially alter the beam dynamics. When the bunch len
has a comparable dimension to the pipe diameter, ima
forces may be on the same order as the free-space
forces. Since many applications use bunch lengths in
range and larger, image effects must be considered. New
considered this problem over 30 years ago@3#. He provided a
very complete mathematical treatment of bunched beam
accelerators. As well as image forces, he included resis
walls and dielectrics in his exposition. However, his fin
results were computed numerically and he was unable
provide any simple analytic models.

In the late 1970s Neuffer was able to formulate a simp
convenient model including image effects@4#. He considered
longitudinal beam dynamics directly without regard to t
transverse dynamics. He did so by employing the geom
factor model for the beam’s longitudinal electric fields. Th
model assumes that the longitudinal self-fields are prop
tional to the derivative of the line charge density of t
beam, the proportionality constant being known as the ge
etry factor~or ‘‘g factor’’!. Using the geometry factor Neu
ffer found that the parabolic line-charge density is a se
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consistent solution to the equations of motion. He th
derived a second-order differential equation for the longi
dinal beam envelope of a bunched beam with parabolic li
charge density. This equation is extremely useful since on
able to study the longitudinal dynamics directly. Howev
for practical purposes we are then relegated to the dete
nation of an appropriate geometry factor. Allen, Brown, a
Reiser studied this geometry factor in detail@5#. They found,
however, that the geometry factor model is not consist
with the actual fields generated by beam bunches. In orde
circumvent this shortcoming, they proposed an average
ometry factor which would be practical for back-of-th
envelope calculations. In the present paper the geometry
tor is not considered. It is our aim to explicitly address t
coupling between the radial and longitudinal motion, as w
as the effects of images.

In previous works, image effects for continuous beams
cylindrical pipes were analyzed@6#. Here we extend the
analysis for bunched beams in cylindrical pipes. We ha
studied bunched beam systems previously@5,7#; however,
most of the results on beam dynamics were obtained num
cally, and these conclusions were mainly qualitative. T
current work is predominantly analytical, complementing t
numerical work on image effects. Moreover, we derive
complete set of differential equations describing the evo
tion of the rms envelopes of bunched beams.

A. Equivalent beam concept

This work is essentially a continuation of the results
Sacherer@8#. He derived a set of coupled, ordinary differe
tial equations that describe the evolution of the rms be
envelopes for continuous beams and bunched beams ha
ellipsoidal symmetry. In the continuous beam case, th
equations have the same functional form as the Kapchins
Vladimirskij coupled-envelope equations@9# ~KV equa-
tions!. Indeed, for the uniform distribution these equatio
are the KV equations exactly. This fact has led to the not
of equivalent beams.

Sacherer’s formalism allows us to model any continuo
beam having elliptical symmetry with an equivalent K
7591 © 1997 The American Physical Society
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7592 55CHRISTOPHER K. ALLEN AND MARTIN REISER
beam~the KV beam is a uniform-density, continuous bea
with elliptical cross-section!. This equivalent beam mus
have the same second moments, or rms envelopes, a
actual beam under study. Thus, the KV coupled-envel
equations can be used to model any continuous beam
elliptical symmetry, as long as the rms beam envelopes
used in the equations. In this paper we address the que
as to whether or not bunched beams might have the s
properties. That is to say, is it possible to associate
equivalent beam to all bunched beams? And, if not, mi
there be certain parameter regimes where an approxima
would hold true? We also consider this problem in the s
ation of a cylindrical, perfectly conducting beam pipe.

B. Ellipsoidal symmetry

As with Sacherer’s analysis, we only consider bunch
beams with ellipsoidal symmetry. Physically this conditi
means that the charge density of the bunch is constant a
concentric ellipsoidal shells. This property also implies sy
metry conditions with respect to all three Cartesian coo
nate planes. The charge distribution is symmetric across
planesx50, y50, andz50 ~these coordinates are relativ
to the center of the bunch!. These symmetry conditions allow
a convenient mathematical description for the beam distr
tion.

Since we are primarily interested in the longitudinal d
namics, the analysis is further simplified by restricting o
attention to the axisymmetric situation; the bunch has ro
tional symmetry around the beam axis. The results will s
apply, in an average sense, to beams having eccentrici
the transverse plane. An example of our situation is show
Fig. 1 for the uniform density distribution. The bunch
centered in ther -z coordinate plane, wherer andz are cy-
lindrical coordinates. It has densityr0 with a radial semiaxis
a and an axial~longitudinal! semiaxiszm .

C. Further limitations and assumptions

The major shortcoming of this work is that it does n
describe a self-consistent situation. That is, we do not h
complete coupling between the field quantities and the
chanics of the particle beam. The problem lies within t
beam emittances. In this paper we must assume that the
beam emittances are either constant or their variation
known a priori. The forehand knowledge of the rms em
tances through the beam channel is usually an unreal
expectation, since rms emittance growth is a complex p
noma, being difficult to model analytically. On the oth
hand, rms emittance growth usually occurs in the presenc
nonlinear forces, and, from previous analysis@5#, we know

FIG. 1. Example bunch geometry of a uniform density ellipsoi
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the image forces are typically nonlinear. Thus the assum
tion of constant emittances leaves us with a potentially
consistent analysis.

So where does this leave us? The best possible cours
action would seem to be the assumption of a station
beam, that is, a beam whose distribution does not chang
form over time. Therefore, the rms emittances would n
change as well. There are several known stationary distr
tions, the KV~or microcanonical! distribution, the waterbag
distribution, and the Maxwell-Boltzmann~or thermal! distri-
bution, to name a few. Unfortunately, however, the ellips
dal distribution is not one of them and we are back where
started.

We validate the results of this paper by considering
Maxwell-Boltzmann distribution, and noting a few pract
calities. The Maxwell-Boltzmann distribution is probably th
most important distribution from a practical standpoint, sin
it is the one seen most in experiments. First, assume tha
focusing fields are linear, which is usually the situation. Th
the two limiting cases of the Maxwell-Boltzmann distribu
tion, the high-temperature and zero-temperature cases
approximate ellipsoidal distributions. In the high
temperature case, where the self-fields become neglig
compared to the applied fields, the distribution becom
Gaussian and ellipsoidally symmetric. Previous studies h
shown that in the zero-temperature case the Maxw
Boltzmann distribution is uniform and close to ellipsoidal
shape@7#. Since the Maxwell-Boltzmann distribution is sta
tionary, the rms emittances would be approximately cons
if one was operating close to one of these regimes. We c
not really predict the accuracy of the upcoming analy
whenever both emittance effects and space-charge effect
comparable.

The results of this paper are going to be the most us
and accurate for the space-charge-dominated case. This
is of primary importance for high-current applications, su
as inertial fusion. The space-charge-dominated situatio
the zero-temperature limiting case of the Maxwe
Boltzmann distribution. It is known that the charge dens
distributes itself almost uniformly~being exactly uniform at
zero temperature!, and that emittance~temperature! effects
are negligible. Thus any unknown variations in the emittan
would play little part in this situation. Moreover, we men
tioned above that if the focusing fields are linear then
stationary distribution is close to ellipsoidal in shape. Th
an accurate model for a space-charge-dominated bun
beam would be a uniform density ellipsoid. This case is c
sidered in detail in this paper.

As our final precondition, we assume that the particle
locities relative to the~moving! bunch centroid are smal
enough so that magnetic field self-forces can be neglec
Thus the self-forces of the beam bunch are electrostati
nature, and Poisson’s equation is sufficient to describe th
Note, however, that the magnetic fields from the collect
axial motion of the beam bunch are not neglected. Th
fields lead to the factorg2 in the rms envelope equations~g
being the relativistic factor!.

D. Beam frame and local coordinates

The direction of propagation for charged particle beam
typically taken to be thez direction. However, we wish to
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55 7593BUNCHED BEAM ENVELOPE EQUATIONS INCLUDING . . .
reserve the cylindrical coordinates (r ,z) for points within the
beam frame. Consequently, we introduce the path length
rameterz which is the axial location~in the laboratory frame!
of the bunch’s center of mass. This parameter will serve
the independent variable, rather than timet.

We do not consider acceleration or the effects of acc
eration. We assume that the beam coasts with an ave
axial velocityv. Therefore, the axial locationz of the bunch
centroid, starting at positionz50 after a timet, is given by
z5vt. Now we attach a coordinate system to the beam c
ter which moves with velocityv along with the beam. We
call this coordinate system thebeam frame. Note that this
frame isnot the inertial frame of the beam, it is simply
laboratory frame coasting with the beam. The cylindrical c
ordinates (r ,z) refer to points within the beam frame, calle
the local coordinates. The center of the beam frame~the
bunch centroid! has coordinate (r ,z)5(0,0) and starts at the
initial axial location ofz50 at timet50. The local coordi-
natez refers to the axial position of a particle with respect
the beam frame. Thus, a particle with local coordina
(r ,z)beam in the beam frame has coordinates (r ,z1z) lab
5(r ,z1vt) lab in the stationary laboratory frame. This situ
tion is depicted in Fig. 2.

E. Density function

As mentioned, we consider beams with an ellipsoi
symmetry. To further simplify matters, we treat only the a
symmetric case, hence the use of cylindrical coordinates.
bunched beams this condition indicates that the particle d
sity functionn for the beam has the form

n~r ,z!5 f S r 2a2 1
z2

zm
2 D , ~1!

where f is some nonnegative real function. The quantit
a and zm are the semiaxes of concentric ellipsoids alo
which the density is constant, Fig. 1 illustrates these qu
tites for the example of a uniform ellipsoid. The quantiti
n, f , r , z, a, and zm are all, in general, functions ofz,
however, we suppress this explicit dependence for eas
notion. From the above equation we find the beams’s cha
densityr to be

r~r ,z!5qn~r ,z!5q fS r 2a2 1
z2

zm
2 D , ~2!

whereq is the particle charge.

FIG. 2. The beam frame and the laboratory frame.
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F. rms envelope equations

Denote byr̃ and z̃ the rms beam envelopes for the rad
and axial directions, respectively. Denote the moment op
tor with respect to the particle distribution as^•&. Thenr̃ and
z̃ are defined as

r̃[^r 2&1/2 and z̃[^z2&1/2. ~3!

Using an analysis similar to that of Sacherer, we may der
a set of ordinary differential equations for the rms beam
velopes, they are@10#

r̃ 91k r~z! r̃2K
2pe0
qN

^rEr&
r̃

2
ẽ r

2

r̃ 3 50,
~4!

z̃ 91kz~z!z̃2g2K
2pe0
qN

^zEz&
z̃

2
ẽ z

2

z̃ 3 50,

where k r(z) and kz(z) are the focusing functions in th
radial and axial directions,Er andEz are the self-electric-
field components in the radial and axial directions,ẽ r and
ẽz are the rms emittances in the radial and axial directio
respectively, g is the relativistic factor given by (1
2v2/c2)1/2, K is the generalized beam perveance,N is the
number of particles in the bunch, ande0 is the permittivity of
free space. The perveanceK5(I /I 0)(2c

3/g3v3), whereI is
the bunch current andI 0 is the characteristic current, is pro
portional to bunch chargeQ since I5Qv. For a detailed
description of these parameters, see Reiser@11#. The focus-
ing functionsk r(z) andkz(z) represent the external focus
ing system which contains the beam@e.g., a transport section
RFQ ~radio frequency quadrupole!, etc#. Thus, in the station-
ary beam situation, the quantities^rEr& and ^rEz& are the
only unknowns in the equations.

G. Definitions

Before proceeding, we introduce some definitions to s
plify the foregoing analysis. First, let the integral of the de
sity function f be given asg, specifically

g~r ![E
r

`

f ~s!ds. ~5!

Also, let the constantG be defined as

G[E
0

`

g2~r 2!dr. ~6!

The pth moment of the functionf ~and not of the function
n! is denotedFp ; that is

Fp[E
0

`

r pf ~r !dr. ~7!

We do not restrict the subscriptp to integer values; for ex-
ample, the number of bunch particlesN may be expressed



la

th

-

7594 55CHRISTOPHER K. ALLEN AND MARTIN REISER
N52pE
2`

1`E
0

1`

n~r ,z!r dr dz

52pE
2`

1`E
0

1`

f S r 2a2 1
z2

zm
2 D r dr dz

52pa2zmF1/2, ~8!

where the final expression is obtained by integrating in po
coordinates. Finally, we define the quantitiesj andh as

j2[
zm
2 2a2

zm
2 512

a2

zm
2 512

1

2

r̃ 2

z̃ 2 ~zm.a!,

~9!

h2[
a22zm

2

zm
2 5

a2

zm
2 215

1

2

r̃ 2

z̃ 221 ~zm,a!.

The quantityj is known as the eccentricity of an ellipse wi
major axiszm and minor axisa. It will appear quite fre-
quently in the sequel.

II. FREE-SPACE RMS ENVELOPE EQUATIONS

The quantitieŝ rEr& and^zEz& can be computed analyti
cally in the free-space situation~i.e., no beam pipe!. In this
case the electric self-potentialf of the bunch is given by@2#

f~r ,z!5
qa2zm
4e0

E
0

`E
S~ t !

` f ~s!

~a21t !~zm
2 1t !1/2

ds dt, ~10!

where

S~ t ![
r 2

a21t
1

z2

zm
2 1t

. ~11!

Using this expression, we find that@12#
r

^rEr&

5H q

4e0

G

F1/2

a2

j2 F11
j221

j
arctanhjG for zm.a

q

4e0

G

F1/2

a2

h2 Fh211

h
arctanh21G for zm,a

~12!

and

^zEz&5H q

4e0

G

F1/2

a2

j2 F 1

j arctanhj21G for zm.a

q

4e0

G

F1/2

a2

h2 F12
1

h
arctanh G for zm,a.

~13!

Substituting these expressions into Eqs.~4! yields the follow-
ing set of differential equations for the rms envelopesr̃ and
z̃:

r̃ 91k r~z! r̃2L~ f !
K

r̃ 2 Wr S z̃r̃ D2
ẽ r

2

r̃ 3 50,
~14!

z̃91kz~z!z̃2L~ f !
g 2K

z̃ 2 WzS z̃r̃ D2
ẽ z

2

z̃ 3 50,

whereL( f ) is a positive function of the density functionf
defined by

L~ f ![
1

4A3
G@F3/2#

1/2

@F1/2#
5/2

5
1

4A3
E
0

`

g2~r 2!dr
@*0

`r 3/2f ~r !dr#1/2

@*0
`r 1/2f ~r !dr#5/2

, ~15!

and the auxiliary functionsWr(s) andWz(s) are defined as
Wr~s![5
1

2

1

~ 1
22s2!3/2

arctan
A1

22s2

s
2

s
1
22s2

for sP@0,1/A2!

s

s22 1
2

2
1

2

1

~s22 1
2 !3/2

arctanh
As22 1

2

s
for sP~1/A2,`!

~16!

and

Wz~s![5
s2

1
22s2

2
s3

~ 1
22s2!3/2

arctan
A1

22s2

s
for sP~0,1/A2!

s3

~s22 1
2 !3/2

arctanh
As22 1

2

s
2

s2

s22 1
2

for sP~1/A2,`!.

~17!
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55 7595BUNCHED BEAM ENVELOPE EQUATIONS INCLUDING . . .
The graphs of functionsWr(s) andWz(s) are shown in Fig.
3. Equations~14! describe the evolution of the rms envelop
r̃ and z̃ as a function of positionz.

Equivalent uniform bunched beam in free space

Notice that in the above situation the rms envelopes
namics are dependent on the distribution. In Eqs.~14! the
rms envelopes depend on the distribution through the fu
tion L( f ). If the form of the distribution remains consta
during the evolution~for example, a uniform distribution or a
Gaussian distribution!, then L( f ) also remains constan
More importantly, however, referring to Table I we see th
the value ofL( f ) does not change significantly over a wid
range of distributions. Consequently, in free space the
namics are only loosely coupled to the form of the distrib
tion, Sacherer pointed this out in his paper. Thus we m
justify the the use of an equivalent beam for the bunch
beam situation, which is approximately true in this ca
Since it has well-defined beam envelopes, we take the
form density ellipsoid~depicted in Fig. 1! to be our equiva-
lent uniform beam in free space. The evolution of a
bunched beam may be closely approximated with this u
form density ellipsoid having the same second moments
the actual bunch.

We derive the rms envelope equations for the equiva
uniform density beam in free space. For the uniform ell
soidal distribution the functionf has the form

f ~x!5H 3N

4pa2zm
for x<1

0 for x.1.

~18!

For this distribution note thata is the radial semiaxis of the
bunch envelope, whilezm is the axial semiaxis. The consta
value of the functionf is seen to be the total number o
particles divided by the volume of the ellipsoid. We compu
the functiong(x) in Eq. ~5! to be

g~x!5H 3N

4pa2zm
~12x! for x<1

0 for x.1.

~19!

From these expressions the value ofL( f ) is

L~ f !5
3

10A5
. ~20!

The rms envelopes for this distribution are given as

r̃[^r 2&1/25A2
5a, z̃[^z2&1/25A1

5zm . ~21!

FIG. 3. Auxiliary functionsWr(s) andWz(s).
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Note that the uniform density ellipsoid has a well-defin
bunch envelope. Instead of writing differential equations
the rms beam envelopesr̃ andz̃, we may as well write them
for the beam envelopes themselves. Such a set of equa
would provide a more physical picture of the bunch dyna
ics. For the uniform density ellipsoid the quantitiesa and
zm are the bunch envelopes for the distribution. However,
wish to reserve these symbols for forthcoming calculatio
We introduce the variablesR(z) andZ(z) as the radial and
axial envelopes~actually the semiaxes! for the uniform den-
sity ellipsoid. From Eqs.~21! the bunch envelopes are

R~z![A 5
2 r̃ and Z~z![A5z̃. ~22!

We also introduce the effective emittances of the unifo
density ellipsoid; these quantities are denotede r and ez for
the radial and axial directions, respectively. The effect
emittances are

e r[
5
2 ẽ r and ez[5ẽz . ~23!

They normalize the differential equations for the bunch e
velopesR andZ.

Collecting these results and substituting them into the m
ment equations of Sec. I yields

R91k r~z!R2
3

4A5
K

R2 WrS Z

A2RD 2
e r
2

R3 50,

~24!

Z91kz~z!Z2
3

2

K

Z2
WzS Z

A2RD 2
ez
2

Z3
50.

These equations describe the behavior of the equivalent
form density ellipsoid having the same second moments
the actual beam under study.

III. BEAM ENVELOPE EQUATIONS
WITH IMAGE EFFECTS

Now we include the image effects in the dynamics eq
tions. This is accomplished by including the contributions
the radial and axial image field componentsEr

i andEz
i when

computing the momentŝrEr& and ^zEz&. By linearity, we
may simply add these contributions to those already obtai
for the free-space situation. Thus, we need only compute
momentŝ rEr

i & and ^zEz
i &. Moreover, the image effects ar

negligible whenever the bunch is spherical or oblate@5#.
Therefore, in the analysis to follow we only concern ou
selves with the situationzm.a, assuming that the imag
forces are zero otherwise.

We use a Green’s function approach to find the fieldsEr
i

andEz
i in the beam frame~recall that this is not an inertia

frame!. Specifically, the solution of Poisson’s equation f
the bunch potentialf(r ,z) inside a conducting pipe with
radiusb is given by

f~r ,z!5E
2`

1`E
0

b

G~r ,z;r s ,zs!r~r s ,zs!r sdrsdzs , ~25!

whereG(r ,z;r s ,zs) is the Green’s function, andr(r s ,zs) is
the charge density of the beam bunch. Note that the cylin
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TABLE I. Particle beam distributions and the correspondingL( f ). The symbolsC ands, respectively,
represent the normalization constant and the standard deviation for the particular distribution.

Distribution f (x) L( f ) C

Uniform C for x<1
0 for x.1

3

10

1

A5
'0.1342

3N

4pa2zm

Parabolic C(12x) for x<1
0 for x.1

5

14

1

A7
'0.1350

15N

8pa2zm

Hollow Cxe2x/2s2
1

16 S 15p D 1/2'0.1366
N

3s5~2p!3/2a2zm
Gaussian Ce2x/2s2

1
4

1

Ap
'0.1410

N

s3(2p)3/2a2zm
ti

h

st

g

n’

an
n

irs

.

er-

nc-

f

ity

ut

of
q.
cal coordinates (r ,z) denote field points while (r s ,zs) de-
notes source points. One representation for Green’s func
may be obtained by Fourier transforming thez coordinate in
the Poission equation for an infinitesimal ring source. T
result is@13#

G~r ,z;r s ,zs!

5
1

2pe0
E

2`

1`S I 0~vb!K0~ uvur.!2 I 0~vr.!K0~ uvub!

I 0~vb! D
3I 0~vr,!eiv~z2zs!dv, ~26!

whereI 0 andK0 are the modified Bessel functions of the fir
and second kind, respectively, andr,[min(r,rs) and r.

[max(r,rs). In this representation the free-space and ima
components may be readily identified. Note thatK0(uxu) ap-
proaches zero andI 0(x) blows up asx approaches infinity.
Thus, taking the limit asb approaches infinity yields the
free-space Green’s functionGf(r ,z), given by

Gf~r ,z;r s ,zs!5
1

2pe0
E

2`

1`

K0~ uvur.!I 0~vr,!eiv~z2zs!dv.

~27!

This in turn implies that the image component of the Gree
function, denotedGi(r ,z), is given as

Gi~r ,z;r s ,zs!52
1

2pe0
E

2`

1` K0~ uvub!

I 0~vb!
I 0~vr !

3I 0~vr s!e
iv~z2zs!dv. ~28!

Note that, unlikeG(r ,z), the image componentGi(r ,z) is an
analytic function of all of its arguments. We mention that
alternate form forG is obtained from a Bessel series expa
sion. It is given by@5#

G~r ,z;r s ,zs!5
1

e0b
(
n51

`
J0~bnr !J0~bnr s!

anJ1
2~an!

e2bnuz2zsu.

~29!

A. Definitions

We pause here to introduce some more definitions. F
the Fourier transform operator is denotedF@•# and a Fourier
on

e

e

s

-

t,

transformed function is indicated with the caret.~See Appen-
dix B for a complete definition of the Fourier transform!
Thus we writeĥ(v)5F@h(x)# for the transformĥ(v) of the
functionh(x).

In the sequel we encounter the Fourier transforms of c
tain expressions involving the functionsf and g; we shall
employ special notation for these quantities. Define the fu
tion f̃ (v) to be the Fourier transform ofx2f (x2), that is,

f̃ ~v![F@x2f ~x2!#5E
2`

1`

x2f ~x2!e2 ivxdx, ~30!

and define the functiong̃(v) to be the Fourier transform o
g(x2),

g̃~v![F@g~x2!#5E
2`

1`

g~x2!e2 ivxdx. ~31!

Note that the argument of bothf (x2) andg(x2) is x2 in the
above definition. This makesf and g even functions ofx
and, therefore, the transformsf̃ (v) and g̃(v) are both real,
even functions ofv.

Also needed in the sequel will be the line-charge dens
of the distribution defined byf ; this quantity is denoted
rL(z). The line-charge density is found by integrating o
the radial variation inr(r ,z); we have

rL~z![2pE
0

`

r~r ,z!r dr52pqE
0

`

f S 2

a2
1
z2

zm
2 D r dr

5qpa2gS z2zm2 D . ~32!

B. Image potential and image fields

The image potentialf i for a bunch with ellipsoidal sym-
metry is expressed by substituting the Green’s function
Eq. ~28! into Eq. ~25!, and using the charge density of E
~2!,
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f i~r ,z!52
q

2pe0
E

2`

1`

dv
K0~ uvub!

I 0~vb!
I 0~vr !eivz

3E
2`

1`E
0

`

I 0~vr s!e
2 ivzsf S r s2a2 1

zs
2

zm
2 D r sdrsdzs .

~33!

It is understood that the charge distribution is zero for
r s.b, so the interval of integration over the coordinater s
may be taken as@0,̀ !. We begin separating the integration
with the coordinate changer s5ass(12xs

2)1/2 and zs
5zmssxs ~which is a polar transform followed byxs
5cosu),

f i~r ,z!52
qa2zm
2pe0

E
2`

1`

dv
K0~ uvub!

I 0~vb!
I 0~vr !eivz

3E
21

11E
0

`

I 0~vassA12xs
2!e2 ivzmssxsf ~ss

2!ss
2

3dssdxs

52
qa2zm
pe0

E
2`

1`

dv
K0~ uvub!

I 0~vb!
I 0~vr !eivz

3E
0

1E
0

`

I 0~vassA12xs
2!cos~vzmssxs! f ~ss

2!

3ss
2dssdxs . ~34!

In the second line we used the Euler representation for
cosine function to combine the integrations on either side
xs50. Carrying out the integration overxs ~see Appendix A!
yields

f i~r ,z!52
qa2zm
pe0

E
2`

1`

dv
K0~ uvub!

I 0~vb!
I 0~vr !eivz

3E
0

`

sinc~vssAzm2 2a2! f ~ss
2!ss

2dss .

~35!

~See Appendix B for the definition of the sinc function.! This
expression is only valid forzm.a. Performing the integra-
tion overss once by parts, we obtain

f i~r ,z!52
qa2zm
2pe0

E
2`

1`

dv
K0~ uvub!

I 0~vb!
I 0~vr !eivz

3E
0

`

g~ss
2!cos~vssAzm2 2a2!dss . ~36!

Sincess
2 is an even function,g(ss

2) is an even function ove
the interval~2`,1`!. With this in mind, we may conside
the integration overss to be a Fourier transform to the var
ablev(zm

2 2a2)1/25vjzm . Thus, the above equation may b
interpreted as
ll

e
f

f i~r ,z!52
qa2zm
4pe0

E
2`

1` K0~ uvub!

I 0~vb!
I 0~vr !g̃~vjzm!eivzdv

52
1

2pe0
E

2`

1` K0~ uvub!

I 0~vb!
I 0~vr !r̃L~jv!eivzdv,

~37!

where g̃ is the Fourier transform of Eq.~31! and, in the
second line,r̃L is the Fourier transform of the line-charg
density. The above equation forf i may be seen as an invers
Fourier transform.

From the expression forf i we can compute the field
componentsEr

i andEz
i by direct differentiation, we obtain

Er
i ~r ,z!5

qa2zm
4pe0

E
2`

1` K0~ uvub!

I 0~vb!
I 1~vr !g̃~vjzm!eivzvdv

~38!

and

Ez
i ~r ,z!

5
iqa2zm
4pe0

E
2`

1` K0~ uvub!

I 0~vb!
I 0~vr !g̃~vjzm!eivzv dv.

~39!

Note the imaginary coefficienti in the above equation indi
cates thatEz

i is an odd function ofz.
It is also possible to compute the image charge on

pipe which is given by the surface-charge densitys(z). This
is done by comparingf i to the potential generated bys(z)
in free space~i.e., the expression usingGf!. We have@10#

s~z!52
qa2zm
4pb E

2`

1` g̃~vjzm!

I 0~vb!
eivzdv. ~40!

C. Image potential as an infinite summation

It is possible to expressf i in terms of an infinite series o
Bessel functions. We do this by considering Eq.~37! for f i

as an inverse Fourier transform. Equation~37! may be re-
written as

f i~r ,z!52
1

2pe0
E

2`

1`

k̂~r ,v!rL~vjzm!eivzdv, ~41!

where

k̂~r ,v![K0~ uvub!
I 0~vr !

I 0~vb!
~42!

is the Fourier transform of some functionk(r ,z), yet to be
determined. Refering to Appendix B, we have

k~r ,z!5
1

2

1

Ar 21z2
2
1

b (
n51

`
J0~bnr !

anJ1
2~an!

e2bnuzu. ~43!

Using the convolution theorem@14# for Fourier transforms,
we may transform the integration over the ‘‘spatial fr
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quency’’ parameterv into a convolution over the source’
spatial coordinatezs . An application of the convolution
theorem yields

f i~r ,z!52
1

2pe0
E

2`

1`

k~r ,z,2zs!
1

j
rLS zsj Ddzs .

~44!

Substituting in the expression fork(r ,z) yields

f i~r ,z!52
1

4pe0
E

2`

1`

1

j
rLS zsj D

@r 21~z2zs!
2#1/2

dzs1
1

2pe0b

3 (
n51

`
J0~bnr !

anJ1
2~an!

E
2`

1` 1

j
rLS zsj De2bnuz1zsudzs .

~45!

The image fields behave as though they are due to a
charge obtained by uniformly contractingrL(z) by a factor
j. The first term is the negation of free-space potential o
side the charge distribution~this quantity may be compute
directly!. The second term is the full potential~both image
and free space! from the line-charge distributionrL(z/j)/j
centered in a perfectly conducting pipe with radiusb, as
s
t
tio
in

e

e

t-

interpreted from the alternate representation for Gree
function of Eq.~29!. This situation is depicted schematical
in Fig. 4 for a bunch with eccentricityj5(12a2/zm

2 )1/2.
Thus, outside the distribution, the total fields for a bun
behave as though they are generated by the line ch
rL(z/j)/j.

The surface-charge densitys(z) may also be found in
terms of an infinite series of Bessel functions using a sim
procedure. Proceeding in an analogous manner, we find

s~z!52
1

2pb2 (
n51

`
1

J1~an!
E

2`

1` 1

j
rLS zsj De2bnuz2zsudzs .

~46!

The image charge also seems to be induced by the l
charge distributionrL(z/j)/j.

D. Image components ofŠrE r‹ and ŠzEz‹

Now consider the momentŝrEr
i & and ^zEz

i &, which are
the respective contributions to^rEr& and^zEz& from the im-
age charge on the pipe. The integrations occurring in th
computations may be separated with coordinate transfor
tions similar to those used to computef i . This time, how-
ever, they are applied to the field coordinates (r ,z). First we
concentrate on the moment^zEz

i &,
^zEz
i &5

iqa2zm
2e0N

E
2`

1`

dv v
K0~ uvub!

I 0~vb!
g̃~vjzm!E

2`

1`E
0

`

I 0~vr !eivzf S r 2a2 1
z2

zm
2 D zr dr dz

5
iqa4zm

3

2e0N
E

2`

1`

dv v
K0~ uvub!

I 0~vb!
g̃~vjzm!E

0

`

ds f ~s2!s3E
21

1

xI0~vasA1-x2!eivzmsxdx, ~47!
e

where we have again used the change of coordinater
5as(12x2)1/2 and z5zmsx in the second line. Note tha
the integrand, less the complex exponent, is an odd func
of x. Thus the complex exponent may be converted to a s
function by changing the interval of integration to~0,1#. We
also obtain a factor 2i from the Euler representation of th
sine function. The result is

^zEz
i &5

iqa4zm
3

2e0N
E

2`

1`

dv v
K0~ uvub!

I 0~vb!
g̃~vjzm!

3E
0

`

ds s3f ~s2!2i E
0

1

xI0~vasA12x2!

3sin~vzmsx!dx. ~48!

We may now carry out the integration overx by referring to
Appendix A. The result is
n
e

^zEz
i &52

qa4zm
3

e0N
E

2`

1`

dv v
K0~ uvub!

I 0~vb!
g̃~vjzm!

3
zm

v~zm
2 2a2!

E
0

`

s2f ~s2!~ sincvsAzm2 2a2

2cosvsAzm2 2a2!ds, ~49!

which is technically valid only for the casezm.a. If we
interpret the integration overs as a Fourier transform to th

FIG. 4. Beam bunch and its equivalent image field source.
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variablev(zm
2 2a2)1/25vjzm , as we did in the expressio

for f i , the above expression becomes

^zEz
i &52

qa4zm
2e0Nj3 E2`

1`
K0S uvu

b

jzm
D

I 0S v
b

jzm
D

3@ 1
2 g̃~v!g̃~v!2 f̃ ~v!g~v!#dv, ~50!

where we have used the substitutionv→vjzm .
Now consider the moment^rEr

i &. Proceeding in a fashion
similar to that for the moment̂zEz

i &, the moment̂ rEr
i & is

represented as

^rEr
i &5

qa5zm
2

2e0N
E

2`

`

dv v
K0~ uvub!

I 0~vb!
g̃~vjzm!

3E
0

`

ds s3f ~s2!E
21

1
A12x2I 1~vasA12x2!

3eivzmsxdx. ~51!

The term (12x2)1/2 in the integration overx arises from the
factor r in the quantity^rEr

i &, it is analogous to the facto
x which appears in the expression for^zEz

i &. The integration
over x may be simplified by performing one integration b
parts to yield

^rEr
i &5

qa6zm
2i e0N

E
2`

1`

dv v
K0~ uvub!

I 0~vb!
g̃~vjzm!

3E
0

`

ds s3f ~s2!E
21

1

xI0~vasA12x2!eivzmsxdx.

~52!

The integration overx may now be carried out~again, using
Appendix A! to find the expression
^rEr
i &5

4qa6zm
2

e0N~zm
2 2a2!

E
2`

1`

dv
K0~vb!

I 0~vb!
g̃~vjzm!

3E
0

`

s2f ~s2!~ sincvsAzm2 2a2

2cosvsAzm2 2a2!ds. ~53!

In terms of the Fourier transformsf̃ andg̃, this moment may
be expressed as

^rEr
i &5

qa6

2e0Nj3zm
E

2`

1`
K0S uvu

b

jzm
D

I 0S v
b

jzm
D

3@ 1
2 g̃~v!g̃~v!2 f̃ ~v!g̃~v!#dv. ~54!

The final expressions for̂rEr
i & and ^zEz

i & cannot be further
reduced without ana priori knowledge of the distribution
f . However, once the distributionf is chosen the integration
in the expressions for̂rEr

i & and^zEz
i & have only one param

eter. This condition facilitates the introduction of an aux
iary functionAf(x), defined

Af~x![CAE
2`

` K0~vx!

I 0~vx!
g̃~v!@ 1

2 g̃~v!2 f̃ ~v!#dv. ~55!

The factorCA is added to provide some normalization, w
shall choose

CA5
2p2a4zm

2

9N2 , ~56!

which favors the uniform density distribution. The imag
components can be written in terms of the functionAf ,

^rEr
i &5

1

CA

qa6

2e0Nj3zm
Af S b

jzm
D5

9Q

4p2e0

a2

j3zm
3 Af S b

jzm
D

~57!
TABLE II. Particle beam distributions and their correspondingAf(x).

Distribution Af(x).

Uniform E
2`

1`K0~uvux!
I0~vx!

S3 cosvv2 2
3 sincv

v2 1sincv D S cosvv2 2
sincv

v2 Ddv

Parabolic 225

9 E
2`

1` K0~ uvux!

I 0~vx! S 3 cosvv4 2
3 sincv

v4 1
sincv

v2 D S 15 cosvv4 2
15 sincv

v4 2
cosv

v2 1
6 sincv

v2 Ddv

Hollow 1

81E2`

1` K0~ uvux!

I 0~vx!
v2~v223!~v225!e2v2

dv

Gaussian 1
9
*

2`
1` K0(vx)

I 0(vx)
v2e2v2

dv
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^zEz
i &52

1

Cf

qa4zm
2e0Nj3

Af S b

jzm
D52

Q

4p2e0

zm
2

j3zm
3 Af S b

jzm
D ,

~58!

whereQ5qN is the total bunch charge.

E. Beam envelope equations with image effects

The expressions for moments^rEr
i & and ^zEz

i & are added
to the free-space moments^rEr& and^zEz& to form the com-
plete moments. Referring to the differential set of Eq.~24!
for the equivalent uniform ellipsoid, the image effects a
included directly by adding the image components to
space-charge terms. The result is

R91k r~z!R2
3K

4A5
1

R2 WrS Z

A2RD
2
45K

2

R

~Z22R2!3/2
AfS b

AZ22R2D 2
e r
2

R3 50,

~59!

Z91kz~z!Z2
3g2K

2

1

Z2
WzS Z

A2RD
1
45g2K

2

Z

~Z22R2!3/2
AfS b

AZ22R2D 2
ez
2

Z3
50.

These equations describe the envelope dynamics of
equivalent uniform density ellipsoid inside a beam pip
Note, however, that these equations are dependent upo
particle distribution through the functionAf . Thus, to deter-
mine whether or not there is an equivalent distribution,
need to explore the dependency ofAf on f .

FIG. 5. Comparison of the image effects functionAf(x) for four
different distributions.
e

he
.
the

e

F. Analysis of the functionAf

for different distributions

Here we explore the behavior ofAf(x) for several differ-
ent particle distributions to determine its dependency up
the distribution. Table II lists the integral expressions
Af(x) for the distributions originally presented in Table
The integrations were computed numerically, and their c
responding graphs are shown in Fig. 5. The most impor
curves in the figure are probably those of the uniform dis
bution, and the Gaussian distributions since they repre
the two extreme cases of the Maxwell-Boltzmann~or ther-
mal! distribution. Note that from this graph it can be se
that the image effects are most significant forx,1, corre-
sponding to the long-bunch case whereZ@R. Here the uni-
form distribution has the most significant image effects. W
see from Fig. 5 that we really do not have an equival
beams principle for the bunched beam case. One should
the functionAf(x) for the distribution closest to that of th
actual beam under study. Since many practical beams h
Maxwell-Boltzmann distributions, we can expect the fun
tion Af(x) for these beams to lie somewhere between tha
the uniform distribution and the Gaussian distribution. In t
remainder of this paper we continue the analysis using
uniform distribution with the intent of modeling the spac
charge-dominanted situation.

IV. UNIFORM DENSITY ELLIPSOID

It is possible to derive analytic expressions for the qu
tities of interest in terms of infinite series of Bessel function
In particular, we derive an expression the functionAf(x), for
the uniform density ellipsoid having a radial semiaxisa and
an axial semiaxiszm . We list several other results of intere
before proceeding to the calculation ofAf(x). In particular,
expressions for the image potential and image charge
derived. The expressions in this section mostly of analy
value, since all contain infinite summations of Bessel fun
tions. However, we used asymptotic expressions forAf(x)
which were derived from Eq.~69! when numerically solving
the differential system in Eqs.~59!.

A. Image potential and image charge

The image potentialf i in for the uniform distribution is
found by substituting Eq.~18! into Eq. ~32!, and then into
Eq. ~44!. After integrating we have
f i~r ,z!5
3Q

32pe0j
3zm

3 @~jzm23z!Ar 21~z1jzm!21~jzm13z!Ar 21~z2jzm!2#

1
3Q

16pe0jzm
F S 11

r 2

2j2zm
2 2

z2

j2zm
2 D lnS 2z2jzm1Ar 21~z1jzm!2

2z1jzm1Ar 21~z2jzm!2
D G1

3Q

4pe0jzm
(
n51

`
J0~bnr !

an
2J1

2~an!
Bn~z!,

~60!

where the auxiliary functionBn(z) is defined by
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Bn~z![5 S 12
z2

j2zm
2 D 1

2e2bnjzm cosh~bnz!

bnjzm
1
2e2bnjzm cosh~bnz!22

bn
2j2zm

2 for zP@2jzm ,1jzm#

2e2bnuzu cosh~bnjzm!

bnjzm
2
2e2bnuzu sinh~bnjzm!

bn
2j2zm

2 for uzu.jzm .

~61!

We see that the fringe fields for the image charge seem to be located aroundz56jzm .
The logarithmic term in Eq.~60! contains a singularity atr50 wheneverzP@2jzm ,1jzm#, since its argument approache

zero asr approaches zero. Physically, we know that the image potential is well behaved along thez axis. Thus, the Besse
summation must contain an opposing singularity to cancel that of the logarithmic term. It is possible to identify this sing
and, consequently, obtain a numerically stable expression. The axial (r50) image potential is given as~again see Allen@10#
for details!

f i~0,z!5
3Q

16pe0jzm
35 12

3z2

j2zm
2 1S 12

z2

j2zm
2 D lnS 14 b2

j2zm
2 2z2D 1 (

n51

` 4Bn
i ~z!

an
2J1

2~an!
for uzu,jzm

22
uzu
jzm

6S 12
z2

j2zm
2 D lnS uz2jzmu

uz1jzmu D1 (
n51

` 4Bn
o~z!

an
2J1

2~an!
for uzu>jzm ,

~62!

where choice of the sign in the second line depends on which side of zeroz lies ~1 for z.0 and2 for z,0!, and the two
auxiliary functionsBn

i (z) andBn
o(z) are defined

Bn
i ~z![

2e2bnjzm cosh~bnz!

bnjzm
1
2e2bnjzm cosh~bnz!22

bn
2j2zm

2 ,

~63!

Bn
o~z![

2e2bnuzu cosh~bnjzm!

bnjzm
2
2e2bnuzu sinh~bnjzm!

bn
2j2zm

2 .

In the long bunch limit (zm→`)Bn
i andBn

o approach zero, indicating that these quantities represent the fringe fields o
bunch. The free-space potential for the uniform ellipsoid has previously been determined@1#. One may add that expression
the above to obtain the full potential for a uniform density ellipsoid in a cylindrical pipe.

Now consider the induced surface-charge densitys(z) on the beam pipe. This quantity is found by first substituting E
~18! into Eq.~32! to find rL(z) for the uniform ellipsoid. Then substitute this value into Eq.~46!, which can be integrated with
the result

s~z!5
23Q

4pbjzm
(
n51

`
1

anJ1~an!
35 12

z212/bn
2

j2zm
2 1S 2

bnjzm
1

2

bn
2j2zm

2 De2bnjzm coshbnz for uzu<jzm

S 2 coshbnzm
bnjzm

2
2 sinhbnzm

bn
2j2zm

2 De2bnz for uzu.jzm .

~64!

This expression can be simplified somewhat by identifying some of the convergent Bessel summations in the above~again, see
Allen @10#!. Doing so yields

s~z!5
23Q

8pbjzm
35 12

z2

j2zm
2 2

b2

2j2zm
2 1 (

n51

`
4e2bnjzm coshbnz

anJ1~an!
S 1

bnjzm
1

1

bn
2j2zm

2 D for uzu<jzm

(
n51

`
4e2bnuzu

anJ1~an!
S coshbnzm

bnjzm
2
sinhbnzm
bn
2j2zm

2 D for uzu.jzm .

~65!
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Thus, the image charges on the pipe are mostly parab
with some exponential decay. Since the Bessel series
proaches zero in the long bunch limit, the image cha
would be parabolic in the regionzP@2jzm ,1jzm#, and
zero elsewhere.

B. Image effects function

For clarity the image effects functionAf(x) for the uni-
form ellipsoid will henceforth be denoted simply asA(x).
We now transform the expression forA(x) in Table II to an
infinite summation representation. This is accomplished
using Parseval’s theorem@14#, and realizing the following
fact:

F21@ k̂~0,v!ĝ~vjzm!#5
1

2p E
2`

1` K0~ uvub!

I 0~vb!
ĝ~vjzm!

3eivzdv

52
1

2p

4pe0
qa2zm

f i~0,z!. ~66!

Thus, in general, the functionAf(x) may be expressed as

Af~x!5CfE
2`

1`

@ k̂~0,v!x
bĝ~vjzm!1/zm

j #@ ĝ~v!2 1
2 f̂ ~v!#dv,

~67!

where the notationk̃(0,v)x
b means to replace all occurrenc

of b in k̃(0,v) with x. Note that the substitution operato
ux
b and ux

j commute with the integration. An application o
Parseval’s theorem to the factors in square brackets tr
forms the above to

Af~x!52
4pe0
qa2zm

CfE
2`

1`

@f i~0,z!x,1/zm
b,j #

3@ 1
2g~z2!2z2f ~z2!#dz. ~68!

Note that this is a general expression and is valid for
distributions, hence the notationAf(x). Now we concentrate
on the uniform distribution.

Into the above equation we substitute Eq.~62! for f i and
insert the expressions off (z2) and g(z2) for the uniform
distribution. This action leaves us with an integral express
for A(x) which may be evaluated analytically. The result

A~x!52
61p

450
2

p

15
lnS x4D12pJA~x!, ~69!

where the functionJA(x) is defined

JA~x![ (
n51

`
1

an
2J1

2~an!
S x

an
1
x2

an
2D S x

an
sinh

an

x

2
3x2

an
2 cosh

an

x
1
3x3

an
3 sinh

an

x De2an /x. ~70!
lic
p-
e

y

s-

ll

n

From Eq. ~69! and the fact thatJA(0)50 we see that
A(x) behaves logarithmically aroundx50. For large values
of x we see, from Eq.~55!, that A(x) approaches zero, s
that JA(x) behave logarithmically to cancel the negati
logarithm in Eq.~69!.

C. Beam envelope equations

As argued in Sec. I, for the space-charge-dominated s
ation a bunched beam may be accurately modeled by a
form ellipsoid. Mathematically this is represented by the s
tem described by Eqs.~59!, ~16!, ~17!, and~69!. We collect
these results below for convenience.

R91k r~z!R2
3K

4A5
1

R2 WrS Z

A2RD
2
45K

2

R

~Z22R2!3/2
A~R,Z!2

e r
2

R3 50,
~71!

Z91kz~z!Z2
3g2K

2

1

Z2
WzS Z

A2RD
1
45g2K

2

Z

~Z22R2!3/2
A~R,Z!2

ez
2

Z3
50,

where the new representation for the image functionA is
given as

A~R,Z![H AS b

AZ22R2D for Z.R

0 for Z,R .

~72!

The above result is taken from Eq.~69!, and the fact that
image effects are negligible wheneverZ,R. Once a table of
values forA(x) is constructed~for interpolation!, this system
may be easily integrated using standard numerical te
niques.

D. A simple example

To illustrate the utility of these results, we simulated
simple transport system for bunched particle beams.
transport system has uniform focusing in the radial direct
and period focusing in the longitudinal direction. The focu
ing functions for both directions is shown in Fig. 6~a!. Note
that we have used a ‘‘hard-edge’’ approximation for t
function kz(z). The period ofkz(z) is 25 cm, the pulse
length being 5 cm, with a maximum value 200 m22. The
constant value ofk r(z) is 100 m22. The beam parameter
are given as follows:K50.01, e r5531025 m rad, ez52
31025 m rad, andg51.

The functionA(x) was constructed by numerically com
puting values forx in the interval @0.3,6.3#. These values
were tabulated in order to interpolateA(x) for all the values
of x in this range. Asymptotic expressions derived from E
~69! were used forx,0.3, and we tookA(x)50 for x
.6.3.
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The matched beam solution in free space is shown in
6~b!, while the matched beam solution including a pipe w
radiusb55 cm is shown in Fig. 6~c!. Without the beam pipe
the minimum radial and longitudinal matched beam en
lopes areR051.94 cm andZ054.54 cm, respectively. With
the beam pipe the values areR052.39 cm and Z0
53.43 cm. Obviously, the pipe has a substantial effect
the beam dynamics in this case. As we expect, the im
forces have a focusing effect in the longitudinal direction a
a defocusing effect in the radial direction. Also note the co
pling between the radial and longitudinal motions. Bo
planes oscillate synchronously, in phase with the longitu
nal envelope equation, as they travel down the beam ax

V. CONCLUSIONS

It is possible to write a relatively simple set of couple
ordinary differential equations for the rms beam envelope
an axisymmetric, bunched beam with ellipsoidal symme
In the free-space situation we have the differential sys
given by Eqs.~14!, ~16!, and ~17!. These equations may b
translated to those describing the true beam envelopes o
~approximately! equivalent uniform density bunched beam
which we take to be the uniform density ellipsoid. Th

FIG. 6. Example solutions~a! the focusing functions,~b! the
matched beam solution for the free-space situation, and~c! the
matched beam solution with image effects.
g.

-

n
e
d
-

i-
.

of
.
m

an
,

equivalent uniform beam has the same second moment
rms beam envelopes, of the actual beam. This system is
resented by Eqs.~24!, ~16!, and ~17!. When a cylindrical
beam pipe is present we represent the image effects in
dynamics equations by the image effects functionAf(x), de-
fined in Eq.~55!. This function is plotted in Fig. 5 for four
different distributions. In general the functionAf(x) must be
computed numerically, say from the integral expressio
listed in Table II. In the case of the uniform ellipsoid w
have derived an analytic expression involving infinite su
mations of Bessel functions forAf(x), which we denote as
A(x) for clarity. That expression is given by Eq.~69!. The
differential system with images is described by Eqs.~71! and
~72!, where the auxiliary functions are given by Eqs.~16!,
~17!, and~69!.

Qualitatively we can make a few generalizations. T
beam dynamics are relatively insensitive to the exact form
the distribution in the free-space situation. In this case
can justify the use of an equivalent uniform beam, which
take to be the uniform density ellipsoid, since it has we
defined beam envelopes. That is we can model any bunc
beam as a uniform density ellipsoid so long as the unifo
beam has the same second spatial moments as the a
beam. On the other hand, when image effects become a
tor in the beam dynamics, the distribution’s form becom
important. In the presence of images, we no longer have
convenience of an equivalent uniform beam. As mention
above, the image effects functionAf(x) depends upon the
form of the beam’s distribution.

The most useful application of these results would se
to be for the case of space-charge-dominated beams, w
the stationary distribution is close to a uniform density ell
soid. In this case the longitudinal image effects from a c
lindrical beam pipe would be pronounced due to the la
space charge. Since the uniform ellipsoid is ‘‘approximat
stationary’’ and the dynamics are not sensitive to the be
emittances in the first place, the analysis will be accurate
complete set of ordinary differential equations has been
rived for the uniform density ellipsoid. Once the values
A(x) are tabulated, the differential equations can be ea
integrated by standard numerical techniques. Thus, we h
a convenient method to simulate the behavior of such bea
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APPENDIX A: INTEGRALS

E
0

1

cosaxI0~bA12x2!dx

55
sinhAb22a2

Ab22a2
for a,b

sinAa22b2

Aa22b2
5sincAa22b2 for a.b ,

from Oberhettinger@15#, and



E
0

1

x sin~aA12x2!I 0~bx!dx5

a

b22a2 S coshAb22a22
sinhAb22a2

Ab22a2
D for a,b

A 2 2
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5 a

a22b2 S sin a 2b

Aa22b2
2cosAa22b2D for a.b ,

from above@16#, and

E
0

1

x sin axI0~bA12x2!dx5E
0

1

x sin~aA12x2!I 0~bx!dx55
a

b22a2 S coshAb22a22
sinhAb22a2

Ab22a2
D for a,b

a

a22b2 S sinAa22b2

Aa22b2
2cosAa22b2D for a.b .
y

-

APPENDIX B: FOURIER TRANSFORMS

For a functionf , the Fourier transform will be denoted b
f̃ and defined by the following:

f̂ ~v!5E
2`

1`

f ~x!e2 ivxdx.

The original functionf may be recovered from its transform
by the inversion formula
f ~x!5
1

2p E
2`

1`

f̂ ~v!eivxdv.

We also introduce the ‘‘sinc’’ function which occurs fre
quently in Fourier analysis. The common definition is

sincx[H sinxx , xÞ0

1, x50 .
ble
Listed below are several functions of the independent variablex and their corresponding Fourier transforms in the varia
v.

f (x) f̂ (v)

1 for uxu<a 2a sincav
0 for uxu.a
x

a
for uxu<a

2i
v

@cosav2sincav#

0 for uxu.a
x2

a2
for uxu<a

4 cosav

av2 2
4 sincav

av2 12a sincav
0 for uxu.a

12
x2

a2
for uxu<a

4
av2 @sincav2cosav#

0 for uxu.a
1
30

2
x2

8
2
x3

12
1

x5

160
for xP@22,0#

1
30

2
x2

8
1
x2

12
2

x2

160
for xP@0,12# Scosvv2 2

sincv

v2 D S 3 cosvv2 2
3 sincv

v21sincv D
0 for uxu.2

1

b(n51

`
1

J1~an!
e2bnuzu

1

I0~vb!
@17#

1

2

1

Ar 21z2
2
1

b(n51

`
J0~bnr !

anJ1
2~an!

e2bnuzu K0~ uvub!
I 0~vr !

I 0~vb!
@18#

In the last two transformsbn5an /b, wherean is thenth zero of the Bessel functionJ0 .
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