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Bunched beam envelope equations including image effects from a cylindrical pipe
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We derive a set of differential equations for the beam envelopes of an axisymmetric, bunched beam inside
a perfectly conducting beam pipe. It is found that the beam dynamics are essentially independent of the form
of bunch distribution in the free-space situation, however, in the presence of the beam pipe this is no longer the
case. Analytic expressions involving infinite summations of Bessel functions are derived for the image poten-
tial and image fields of an ellipsoidally symmetric charge distributions in a beam pipe, in particular, the
uniform density distribution. We simulate a simple beam transport system to demonstrate the application of
these resultd.S1063-651X97)11806-3

PACS numbdrs): 29.27.Bd, 41.85.Ja, 29.27.Eg, 41.75.

[. INTRODUCTION consistent solution to the equations of motion. He then
derived a second-order differential equation for the longitu-
In this paper we derive differential equations describingdinal beam envelope of a bunched beam with parabolic line-
the dynamics of a bunched beam’s rms envelopes. The majéharge density. This equation is extremely useful since one is
contribution here is the inclusion of image effects from aable to study the longitudinal dynamics directly. However,
cylindrical beam pipe in the beam dynamics. Also includedfor practical purposes we are then relegated to the determi-
are analytic expressions for the electrostatic image potentidlation of an appropriate geometry factor. Allen, Brown, and
of an ellipsoidal charge distribution in a perfectly conductingReiser studied this geometry factor in defai]. They found,
cylinder, in particular for a uniform density ellipsoid. These however, that the geometry factor model is not consistent
potentials are expressed as infinite summations of Bess#lith the actual fields generated by beam bunches. In order to
functions, and to our knowledge, have never been publishegircumvent this shortcoming, they proposed an average ge-
previously. The free-space potentials for these distribution@metry factor which would be practical for back-of-the-
are already knowii1,2], thus the full electrostatic potential, €nvelope calculations. In the present paper the geometry fac-
including images, may be constructed analytically. tor is not considered. It is our aim to explicitly address the
In the bunched beam situation the image effects may Sutg:oupling between the radial and longitudinal motion, as well
stantially alter the beam dynamics. When the bunch lengti@s the effects of images.
has a comparable dimension to the pipe diameter, images In previous works, image effects for continuous beams in
forces may be on the same order as the free-space sefylindrical pipes were analyzef5]. Here we extend the
forces. Since many applications use bunch lengths in thignalysis for bunched beams in cylindrical pipes. We have
range and larger, image effects must be considered. Newts#udied bunched beam systems previo&ly’]; however,
considered this problem over 30 years &8p He provided a most of the results on beam dynamics were obtained numeri-
very complete mathematical treatment of bunched beams igally, and these conclusions were mainly qualitative. The
accelerators. As well as image forces, he included resistiveurrent work is predominantly analytical, complementing the
walls and dielectrics in his exposition. However, his final numerical work on image effects. Moreover, we derive a
results were Computed numerica"y and he was unable t§0mplete set of differential equations describing the evolu-

provide any simple analytic models. tion of the rms envelopes of bunched beams.
In the late 1970s Neuffer was able to formulate a simple, _
convenient model including image effe¢t. He considered A. Equivalent beam concept

longitudinal beam dynamics directly without regard to the This work is essentially a continuation of the results of
transverse dynamics. He did so by employing the geometrgacheref8]. He derived a set of coupled, ordinary differen-
factor model for the beam’s longitudinal electric fields. Thistial equations that describe the evolution of the rms beam
model assumes that the longitudinal self-fields are proporenvelopes for continuous beams and bunched beams having
tional to the derivative of the line charge density of theellipsoidal symmetry. In the continuous beam case, these
beam, the proportionality constant being known as the geomequations have the same functional form as the Kapchinskij-
etry factor(or “g factor”). Using the geometry factor Neu- Vladimirskij coupled-envelope equation®] (KV equa-
ffer found that the parabolic line-charge density is a self-tions). Indeed, for the uniform distribution these equations
are the KV equations exactly. This fact has led to the notion
of equivalent beams
*Electronic address: cka@technosci.com Sacherer’s formalism allows us to model any continuous
"Electronic address: mreiser@glue.umd.edu beam having elliptical symmetry with an equivalent KV
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the image forces are typically nonlinear. Thus the assump-
tion of constant emittances leaves us with a potentially in-
consistent analysis.

So where does this leave us? The best possible course of
action would seem to be the assumption of a stationary
beam, that is, a beam whose distribution does not change in
form over time. Therefore, the rms emittances would not
change as well. There are several known stationary distribu-
tions, the KV (or microcanonicaldistribution, the waterbag
FIG. 1. Example bunch geometry of a uniform density ellipsoid. distribution, and the Maxwell-Boltzmangor therma) distri-

bution, to name a few. Unfortunately, however, the ellipsoi-

beam(the KV beam is a uniform-density, continuous beamdal distribution is not one of them and we are back where we
with elliptical cross-section This equivalent beam must Started. _ o
have the same second moments, or rms envelopes, as theWe validate the results of this paper by considering the
actual beam under study. Thus, the KV coupled-envelop&axwell-Boltzmann distribution, and noting a few practi-
equations can be used to model any continuous beam witf@lities. The Maxwell-Boltzmann distribution is probably the

elliptical symmetry, as long as the rms beam envelopes ardost important distribution from a practical standpoint, since
' 'gqis the one seen most in experiments. First, assume that the

used in the equations. In this paper we address the questi o . T o
as to whether or not bunched beams might have the sa cusing fields are linear, which is usually the situation. Then
e two limiting cases of the Maxwell-Boltzmann distribu-

properties. That is to say, is it possible to associate a .
equivalent beam to all bunched beams? And, if not, mighf'on’ th.e hlgh-tempergture apd zero-temperature cases, are
there be certain parameter regimes where an approximatigiPProximate  ellipsoidal — distributions. = In  the high-

would hold true? We also consider this problem in the sity-lemperature case, where the self-fields become negligible

: Lo : ; compared to the applied fields, the distribution becomes
ation of a cylindrical, perfectly conducting beam pipe. Gaussian and ellipsoidally symmetric. Previous studies have

shown that in the zero-temperature case the Maxwell-
Boltzmann distribution is uniform and close to ellipsoidal in
As with Sacherer’s analysis, we only consider bunchedshape[7]. Since the Maxwell-Boltzmann distribution is sta-
beams with ellipsoidal symmetry. Physically this conditiontionary, the rms emittances would be approximately constant
means that the charge density of the bunch is constant alorijone was operating close to one of these regimes. We can-
concentric ellipsoidal shells. This property also implies sym-not really predict the accuracy of the upcoming analysis
metry conditions with respect to all three Cartesian coordiwhenever both emittance effects and space-charge effects are
nate planes. The charge distribution is symmetric across theomparable.
planesx=0, y=0, andz=0 (these coordinates are relative = The results of this paper are going to be the most useful
to the center of the bunghThese symmetry conditions allow and accurate for the space-charge-dominated case. This case
a convenient mathematical description for the beam distribuis of primary importance for high-current applications, such
tion. as inertial fusion. The space-charge-dominated situation is
Since we are primarily interested in the longitudinal dy-the zero-temperature limiting case of the Maxwell-
namics, the analysis is further simplified by restricting ourBoltzmann distribution. It is known that the charge density
attention to the axisymmetric situation; the bunch has rotadistributes itself almost uniformlybeing exactly uniform at
tional symmetry around the beam axis. The results will stillzero temperatuje and that emittancétemperaturg effects
apply, in an average sense, to beams having eccentricity iare negligible. Thus any unknown variations in the emittance
the transverse plane. An example of our situation is shown invould play little part in this situation. Moreover, we men-
Fig. 1 for the uniform density distribution. The bunch is tioned above that if the focusing fields are linear then the
centered in the-z coordinate plane, whereandz are cy-  stationary distribution is close to ellipsoidal in shape. Thus,
lindrical coordinates. It has densipy with a radial semiaxis an accurate model for a space-charge-dominated bunched

B. Ellipsoidal symmetry

a and an axiallongitudina) semiaxisz,, . beam would be a uniform density ellipsoid. This case is con-
sidered in detail in this paper.
C. Further limitations and assumptions As our final precondition, we assume that the particle ve-

Th . h . £ thi K is that it d tIocities relative to the(moving bunch centroid are small
e major shortcoming of this work is that it does no enough so that magnetic field self-forces can be neglected.

describe a self-consistent situation. That is, we do not hav?hus the self-forces of the beam bunch are electrostatic in

complete coupling t_)etween the field quantltle_s and_ the Me3ature, and Poisson’s equation is sufficient to describe them.
chanics of the particle beam. The problem lies within the,

. _ Note, however, that the magnetic fields from the collective
heam emittances. In this paper we must assume that the MXial motion of the beam bunch are not neglected. These

beam emittances are either constant or their variation iﬁelds lead to the factoy? in the rms envelope equations
known a priori. The forehand knowledge of the rms emit- being the relativistic factor

tances through the beam channel is usually an unrealistic
expectation, since rms emittance growth is a complex phe-
noma, being difficult to model analytically. On the other
hand, rms emittance growth usually occurs in the presence of The direction of propagation for charged particle beams is
nonlinear forces, and, from previous analyi$, we know typically taken to be the direction. However, we wish to

D. Beam frame and local coordinates
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A Design F. rms envelope equations
| Trajectory 7 v Denote byr andZ the rms beam envelopes for the radial
| ! ‘ —- and axial directions, respectively. Denote the moment opera-
| Lab Frame i\ [ “Beasm Frame tor with respect to the particle distribution &3. Thenr and
fﬂ:;;_‘__{f__ m e Z are defined as
| e T=(r3)2 and7=(2"2 k)
!
¢

Using an analysis similar to that of Sacherer, we may derive
a set of ordinary differential equations for the rms beam en-

FIG. 2. The beam frame and the laboratory frame.
y velopes, they argl0]

reserve the cylindrical coordinates, ) for points within the

~2

beam frame. Consequently, we introduce the path length pa- Tt (OF—K 27eg <rEr>_;:0
rameter{ which is the axial locatiofin the laboratory frame ' gN T rs o 4
of the bunch’s center of mass. This parameter will serve as (4)
the independent variable, rather than titne 2 ~2

; , ~ -, 2mEg(ZE) €3

We do not consider acceleration or the effects of accel- 7"+ kD) Z— YK —— ~—=——=5=0,

eration. We assume that the beam coasts with an average Nz Z

axial velocityv. Therefore, the axial locatiofiof the bunch
centroid, starting at position=0 after a timet, is given by  where «,({) and «,({) are the focusing functions in the
{=wvt. Now we attach a coordinate system to the beam cenradial and axial directionsz, and E, are the self-electric-
ter which moves with velocity along with the beam. We field components in the radial and axial directioes,and
call this coordinate system theeam frame Note that this ¢, are the rms emittances in the radial and axial directions,
frame isnot the inertial frame of the beam, it is simply a respectively, y is the relativistic factor given by (1
laboratory frame coasting with the beam. The cylindrical co-—v?/c?)*2, K is the generalized beam perveanbkeis the
ordinates ¢,z) refer to points within the beam frame, called number of particles in the bunch, agglis the permittivity of
the local coordinates The center of the beam framéghe  free space. The perveanke=(1/1,)(2¢%/y%v?), wherel is
bunch centroitihas coordinater(z) =(0,0) and starts at the the bunch current ankj, is the characteristic current, is pro-
initial axial location of{=0 at timet=0. The local coordi- portional to bunch charg€® sincel=Qu. For a detailed
natez refers to the axial position of a particle with respect todescription of these parameters, see Rdis&}. The focus-
the beam frame. Thus, a particle with local coordinatesng functionsk,(¢) and k,({) represent the external focus-
(r,2)peam in the beam frame has coordinates,z(+ (),  ing system which contains the begeng., a transport section,
=(r,z+vt)y in the stationary laboratory frame. This situa- RFQ (radio frequency quadrupdleetc]. Thus, in the station-
tion is depicted in Fig. 2. ary beam situation, the quantitiésE,) and(rE,) are the
only unknowns in the equations.
E. Density function

As mentioned, we consider beams with an ellipsoidal G. Definitions

symmetry. To further simplify matters, we treat only the axi-  gefore proceeding, we introduce some definitions to sim-
symmetric case, hence the use of cylindrical coordinates. F(H“fy the foregoing analysis. First, let the integral of the den-

bunched beams this condition indicates that the particle de%ity functionf be given ag, specifically
sity functionn for the beam has the form ’
r2 22 rszfsds. 5
n(r,z)=f =+ |, (1) g(r) r (s) (5)
m

] . . _Also, let the constank’ be defined as
where f is some nonnegative real function. The quantities

a and z,, are the semiaxes of concentric ellipsoids along "

which the density is constant, Fig. 1 illustrates these quan- FEJ g2(r?)dr. (6)
tites for the example of a uniform ellipsoid. The quantities 0

n, f, r, z, a, and z,, are all, in general, functions of,

however, we suppress this explicit dependence for ease qthe pth moment of the functiorf (and not of the function
notion. From the above equation we find the beams’s chargg) is denoted-,; that is

densityp to be

2 2

szf:rpf(r)dr. @

p(r.z)=qn(r,z)=qf ; )

;
_J’__
a’ 72,

We do not restrict the subscriptto integer values; for ex-
whereq is the particle charge. ample, the number of bunch particlslsmay be expressed
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B (rEr)
N=2m n(r,z)r dr dz
— 0
a T a_2 1+ £- arctanh¢ for z,>a
toe (e (1272 4eg Fup & & "
=27-rf f fl =+ —=|rdrdz = o1
-» Jo a~ z, g ' a|»+1
deFu |l o arctany—1 for z,<a
= 27Ta.22m|: 12y (8) 0Tz (12)
where the final expression is obtained by integrating in polagyq
coordinates. Finally, we define the quantitieand » as
q I a° 1
2_ .2 2 =2 L — - for z,,>a
ZE Zm a :l_a_:]._l_ > 460 Fl/zgz g arCtanhf_l m
g 2 2 2"“2 (Zm a)a E)=
Zn Zn 4 (9) <Z Z> q T a2 1
— — — | 1— — arctany for z,<a.
2 o ’ ~>5 deg Fip 7 n
- . _ (13
n= Zrzn —an =552 (zm<a).

Substituting these expressions into E¢s.yields the follow-
The quantityé is known as the eccentricity of an ellipse with ing set of differential equations for the rms envelopeand
major axisz, and minor axisa. It will appear quite fre- Z

z
guently in the sequel.
_ _ K 7| €?
r ”+Kr(§)r_A(f)’F_2Wr ’? _’F_:Oy
Il. FREE-SPACE RMS ENVELOPE EQUATIONS (149
2 > ~ 2
The quantitiegrE,) and(zE,) can be computed analyti- = ~ y °K Z)\_€z_
cally in the free-space situatigine., no beam pipe In this 241 §2= M) 7 We 7] =53 =0,
case the electric self-potentiglof the bunch is given bj2]
where A (f) is a positive function of the density functidn
qalz, (= (= f(s) defined by
= 1
¢r2=7 fo L(t) @ Zpeisd @0
Ady= - [Fa]"?
where 43 [Fual™®
r.2 Z2 [fgrSIZf(r)dr]l/Z

_ ngz(rz)dr— (15)
43 Jo [SorY2f(r)dr]®?’

Using this expression, we find thgt2] and the auxiliary function®V,(s) andW,(s) are defined as

1 1 ;- S
2 (—s?)32 arctan s g for se[0,1/2)
W, (s)= — 16

s 1 1 Vg2 1

2 1 2 w2 1.3 arctanh——— for se(1//2,»)

=z “(s°—3) s

and
s? 3 2

for se(0,1/1/2)

. 1 17)
- for se (1/2,»).
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Note that the uniform density ellipsoid has a well-defined
bunch envelope. Instead of writing differential equations for
the rms beam envelopesandz, we may as well write them
for the beam envelopes themselves. Such a set of equations
/ would provide a more physical picture of the bunch dynam-

0oz 4 6 8 10 oz 4 6 & 10 ics. For the uniform density ellipsoid the quantitiasand
s s Z,, are the bunch envelopes for the distribution. However, we
wish to reserve these symbols for forthcoming calculations.
FIG. 3. Auxiliary functionsW,(s) andW,(s). We introduce the variableR(¢) andZ(¢) as the radial and
axial envelopesgactually the semiaxggor the uniform den-
The graphs of function®V,(s) andW,(s) are shown in Fig. sity ellipsoid. From Eqs(21) the bunch envelopes are
3. Equationg14) describe the evolution of the rms envelopes
T andZ as a function of positiof. R(O)= \/g'r” and Z({)=/5z. (22

Wz (s3)

Wr (s)
[
L—T"
/

0O 0=~

Equivalent uniform bunched beam in free space We also introduce the effective emittances of the uniform
density ellipsoid; these quantities are denotednd €, for

Notice that in the above situation the rms envelopes dythe ragdial and axial directions, respectively. The effective
namics are dependent on the distribution. In Ed€) the  ,nittances are

rms envelopes depend on the distribution through the func-
tion A(f). If the form of the distribution remains constant =3¢ ande,=5¢,. (23
during the evolutior{for example, a uniform distribution or a

Gaussian distribution then A(f) also remains constant. They normalize the differential equations for the bunch en-
More importantly, however, referring to Table | we see thatvelopesR andZ.

the value ofA(f) does not change significantly over a wide  Collecting these results and substituting them into the mo-
range of distributions. Consequently, in free space the dyment equations of Sec. | yields
namics are only loosely coupled to the form of the distribu-

tion, Sacherer pointed this out in his paper. Thus we may R+ K, (£)R— —— —5 W, i _ 5r2 —0

justify the the use of an equivalent beam for the bunched ' 4\/§R7 "\ V2R RE

beam situation, which is approximately true in this case. (24)
Since it has well-defined beam envelopes, we take the uni- 3 K 7 €2

form density ellipsoiddepicted in Fig. 1to be our equiva- 2"+ kD) Z— 5 55 W,| —| — —23=O.

lent uniform beam in free space. The evolution of any 227 V2R) Z

bunched beam may be closely approximated with this uni-
form density ellipsoid having the same second moments
the actual bunch.

We derive the rms envelope equations for the equivale
uniform density beam in free space. For the uniform ellip-

soidal distribution the functiofi has the form IIl. BEAM ENVELOPE EQUATIONS
WITH IMAGE EFFECTS

hese equations describe the behavior of the equivalent uni-
orm density ellipsoid having the same second moments as
ntthe actual beam under study.

3N

— for x<1 Now we include the image effects in the dynamics equa-
f(x)=1 4maZm (18)  tions. This is accomplished by including the contributions of
0 for x>1. the radial and axial image field componeB{sandE}, when

S . _ o computing the moment§E,) and(zE,). By linearity, we
For this distribution note tha is the radial semiaxis of the may S|mp|y add these contributions to those a|ready obtained
bunch envelope, while,, is the axial semiaxis. The constant for the free-space situation. Thus, we need only compute the
value of the functionf is seen to be the total number of moments(rE!) and(zE.). Moreover, the image effects are
particles divided by the volume of the ellipsoid. We computenegiigible whenever the bunch is spherical or oblfé

the functiong(x) in Eq. (5) to be Therefore, in the analysis to follow we only concern our-
3N selves with the situatiorz,,>a, assuming that the image
——— (1-X) for x<1 forces are zero otherwise. _
g(x)=4 4maZn 19 We use a Green’s function approach to find the fiditis
0 for x>1. andE, in the beam framérecall that this is not an inertial
. ] frame. Specifically, the solution of Poisson’s equation for
From these expressions the value/dff) is the bunch potentialp(r,z) inside a conducting pipe with
3 radiusb is given by
A(f)= —=. (20) +% (b
105 o= [ oz 2pts 2 drdz, 29

The rms envelopes for this distribution are given as
whereG(r,z;r,zs) is the Green’s function, ang(rg,z) is
F=(r)¥=\2a, F=(2)¥=\/iz,. (21)  the charge density of the beam bunch. Note that the cylindri-
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TABLE |. Particle beam distributions and the correspondi{d). The symbolsC and o, respectively,
represent the normalization constant and the standard deviation for the particular distribution.

Distribution f(x) A(f) C
Uniform C for x=1 3 1 3N
0 for x>1 Eﬁmo.lmz 4ma’z,
Parabolic C(1—x) for x=1 1 15N
0 for x>1 ﬂﬁ~0.1350 8ra’z,
Hollow Cxe ¥20° 1 112 N
16 (?) ~0.1366 30527 %2z,
Gaussian Ce ¥20? 11 N
1 \/—; ~0.1410 72n) %%z,

cal coordinatesr(,z) denote field points whiler(,z;) de-  transformed function is indicated with the car&ee Appen-
notes source points. One representation for Green’s functiodix B for a complete definition of the Fourier transfojm.
may be obtained by Fourier transforming theoordinate in  Thus we writeh(w) = F[h(x)] for the transformh(w) of the

the Poission equation for an infinitesimal ring source. Thefunction h(x).

result is[13] In the sequel we encounter the Fourier transforms of cer-
tain expressions involving the functiorisand g; we shall

G(r.zrs.2o) employ special notation for these quantities. Define the func-
. s . 2 .
1 JM( lo(wb)Ko(|@|F=)— To(wr~)Ko(|w|b) tion f(w) to be the Fourier transform of’f(x?), that is,
C 2mep J o lo(wb ~ +oo .
0 ’ ol D) f(w)zf[xzf(XZ)jzf x2f(x2)e 1 Xdx,  (30)
Xlo(or-)e'®? %dew, (26) -

wherel ; andK g are the modified Bessel functions of the first ] - ]

and second kind, respectively, amd=min(r,r) and r- and define the functiog(w) to be the Fourier transform of
=max(,ry. In this representation the free-space and imagQ(Xz)’

components may be readily identified. Note tKa(|x|) ap-

proaches zero anl)(x) blows up asx approaches infinity. Y

Thus, taking the limit asp z?pproaclﬂ_nes infinity yields the "g'(w)zf[g(xz)kf g(x2)e”1¥dx. (31)
free-space Green’s functidd'(r,z), given by —w

1 +o )
f . — iw(z—25)
G(r.zirs,z) 27e f,x Ko(lelr>)lo(wr<)e do.  Note that the argument of bott{x?) andg(x?) is x? in the

(27) above definition. This makef and g even functions ofx

o o i and, therefore, the transfornigw) andg(w) are both real,
This in turn implies that the image component of the Green’ssyen functions ofw.

function, denoteds'(r,z), is given as Also needed in the sequel will be the line-charge density
1 o Kof|w|b) of the distribution defined byf; this quantity is denoted
Gl(r,z;rs,29)=— f 0 lo(wr) pL(2). The line-charge density is found by integrating out
27€g J -  lo(wh) the radial variation ip(r,z); we have
Xlo(wrg)e'®? %dw. (28)
X . : . o Es 2 2
Note that, unlikeG(r,z), the image componef@'(r,z) is an pL(Z)EZWf p(r,2)r dr=27-rqf fl -+ 2_2 rdr
analytic function of all of its arguments. We mention that an 0 o \a® z,
alternate form foiG is obtained from a Bessel series expan- 2
sion. It is given by[5] —qmaZg z_2> (32)
o m
1 JO(,Bnr)JO(,Bnrs)
. - - 7.3n‘zfzs‘
G(razyrS1ZS) eob =1 an\]%(an) € "
(29) B. Image potential and image fields

The image potentiad' for a bunch with ellipsoidal sym-
metry is expressed by substituting the Green’s function of
We pause here to introduce some more definitions. Firstzq. (28) into Eq. (25), and using the charge density of Eq.

the Fourier transform operator is denotéd | and a Fourier  (2),

A. Definitions
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i q = Ko(|w|b) -
! = — e iwz
¢'(r,2) e wa do Iy(wb) lo(wr)e
+o o B r2 2z
xf j lo(wrge™"%sfl -+ —|rdrdz.
—» Jo a Z,

(33

It is understood that the charge distribution is zero for all

r<>b, so the interval of integration over the coordinate

may be taken af0,»). We begin separating the integrations

with the coordinate change =aoy(1—x%)¥? and z
=zn0Xs (Which is a polar transform followed by,
=co0s6),

Ko(|w|b)

i 9@y [+ iwz
¢(F,Z)———J wIO(Tb)IO(wr)e

2meg

—o0

+1 (o A
X J j I 0( waog\y1— st) e OISt (02)
-1Jo

X dogdX

2
. q&Zy (=, Ko(|elb) o
=T e Lo © J (ob) 'o(@r)e

1 )
Xf f IO( a)aa'sxll—xg)COS(meO'SXS)f(Ug)
0Jo

X o2dogdXxs. (39
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lo( NG 0Ezm)e“dw

¢i(r,2): -

—o0

qa’zy, J” Ko(|w|b)
lo(wb)

41€q

1 J+°°Ko(|w|b)

- 27760 |0(wb) Io(wr)EL(f(u)ei“’Zdw,

—0o0

37

whereg is the Fourier transform of Eq31) and, in the

second line,p, is the Fourier transform of the line-charge
density. The above equation fgf may be seen as an inverse
Fourier transform. _

From the expression fop' we can compute the fields
componentE, andE, by direct differentiation, we obtain

qa’zy f*x Ko(|[b)

El(r,z)= il IO(Tb)|1(wr)a(wgzm)emwdw
(39

and

El(r.,2)

lo(wY(wézy)e' %o dw.

_iga’z, f Ko(|w|b)
B 47760 Io((x)b)

—

(39

Note the imaginary coefficientin the above equation indi-
cates tha€), is an odd function of.

It is also possible to compute the image charge on the
pipe which is given by the surface-charge densifg). This

In the second line we used the Euler representation for thi$ done by comparing' to the potential generated lx(2)
cosine function to combine the integrations on either side of free spacei.e., the expression usir@’). We have{10]

xs= 0. Carrying out the integration ovag (see Appendix A
yields

2 o
$i(r,z)= — 222 f d

TTEQ —

Ko(|w|b)
PAA) b s

| 0( (I)b)

lo( wr)e'®?
XJ Sin(( wa‘s\/zm2 —az)f(og)agdas.
0
(39

(See Appendix B for the definition of the sinc functipfhis
expression is only valid foe,,>a. Performing the integra-
tion overog once by parts, we obtain

+ oo
2meg f—:x: do

X f:g(ag)cos( wasxlzﬁq—az)das. (36)

Ko(|w|b)

| 0( C()b)

2
gaZm

lo( wr)e'®?

¢'(r,2)=—

Sinceag is an even functiorg(og) is an even function over

the interval(—o,+). With this in mind, we may consider

2
_ ga’z,

iwz
ype e'dw.

(40)

o(2)=

eroo ﬁ(wfzm)
lo(wb)

—oo

C. Image potential as an infinite summation

It is possible to expres#' in terms of an infinite series of
Bessel functions. We do this by considering Egj7) for ¢'
as an inverse Fourier transform. Equati@Y) may be re-
written as

. 1 toa .
$D== 5o [ K0 (0Eze o, @1

where

k(r,w)=Kq(|w|b)

lo(wr) (42)
0

lo(wb)

is the Fourier transform of some functider,z), yet to be
determined. Refering to Appendix B, we have

o

11 Jo(Bar)
JZr 2 b adi(ay)

e Al (43

1
k(r,z)zz

the integration ovetg to be a Fourier transform to the vari-
ab|ew(22m_32)1/2: wéz,, . Thus, the above equation may be Using the convolution theorerl4] for Fourier transforms,
interpreted as we may transform the integration over the “spatial fre-
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guency” parametek into a convolution over the source’s interpreted from the alternate representation for Green’s
spatial coordinatez,. An application of the convolution function of Eq.(29). This situation is depicted schematically
theorem yields in Fig. 4 for a bunch with eccentricitg=(1—a?%z2)'2.
Thus, outside the distribution, the total fields for a bunch
zs behave as though they are generated by the line charge

i 1 +o 1
¢(r,2)=—m wa k(r,Z,—Zs)EPL(E)dZs- pL(ZE)IE.

The surface-charge density(z) may also be found in

(44 terms of an infinite series of Bessel functions using a similar
Substituting in the expression fé&(r,z) yields procedure. Proceeding in an analogous manner, we find
: (Z) D=ty L2 (Z) ~pulz-2g
i — Z)=— — —_ e n S .
$(r,2)= - Fw EME] e TET T 2ab? S Jufan ) -
’ dreg ) [F2H(2=297) R %%" 27egd (46)

Jo(Bar) (=1 (Zs) g lztal The image charge also seems to be induced by the line-
X —pLl —=|e Pnlztzldz, charge distributiorp, (z/£)/&.

“ anday) ) EPHE % 9 (2 €)/&
(45) D. Image components okrE,) and (zE,)

The image fields behave as though they are due to a line Now consider the momentsE,;) and(zE,), which are
charge obtained by uniformly contractipg(z) by a factor  the respective contributions {oE,) and(zE,) from the im-

& The first term is the negation of free-space potential outage charge on the pipe. The integrations occurring in these
side the charge distributiofthis quantity may be computed computations may be separated with coordinate transforma-
directly). The second term is the full potentiéddoth image tions similar to those used to compufé. This time, how-
and free spagefrom the line-charge distributiop, (z/¢)/¢  ever, they are applied to the field coordinateg). First we
centered in a perfectly conducting pipe with radiisas  concentrate on the mome(zE,),

iga’zy, Ko(|w|b) f f ez
(zE)= 260N f_w do 0o ————— Io(wb) g(wézy) lo(wr)e'“*f| — zr dr dz
igatz:, [+~ g
= m f do 0 ———— Ko(|lb) (wgzm)f do f(0?)a® f Xl o( wao1-x2)el“Zmr*dx, (47)
ZGON —x Io( b) —
|
where we have again used the change of coordinates , qa‘lzﬁ1 +oo Ko(|w|b) _
=ac(1-x?)Y? and z=z,0x in the second line. Note that (zE)=— f do 0 ———— g(0ézy)
: : : €N J-= lo(wb)
the integrand, less the complex exponent, is an odd function
of x. Thus the complex exponent may be converted to a sine z % _
function by changing the interval of integration ({@,1]. We w(Zz—Taz) J 2f(02)(smma\/z —a’
also obtain a factor i2from the Euler representation of the m
sine function. The result is —COSwa'w/sz—az)da', (49)

which is technically valid only for the casg,>a. If we

a3 interpret the integration over as a Fourier transform to the
(z i>:|qa Znm f+°°dww Ko(|w[b )~(w§z )
EZ 2€0N — Io( b) m

oc 1
XJ do 0'3f(0'2)2if Xlo(waoy1—x?)
0 0

X sin(wzuoX)dX. (48)

<z, " PO

We may now carry out the integration ovweby referring to
Appendix A. The result is FIG. 4. Beam bunch and its equivalent image field source.
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variable w(z5— a%)*= wéz,,, as we did in the expression ‘ 4qacz?, Ko(wb)
for ¢', the above expression becomes (rfEp)= NZ—ad) J ® T(wb) 9(wézy)

1 x | 0?07 (sinawo V722
0
. qa'zy [+ (|w| £z, )
<ZEZ>Z—W f_m W — cosvo\/z2,—a2) do. (53)
0

© —
P4 ~
_ £2m In terms of the Fourier transfornfsandg, this moment may
X[39(@)g(0)—f(w)g(w)]do, (50  be expressed as

b
where we have used the substitutior- w £z, . q Ko< |w] 57)
Now consider the momentE,). Proceeding in a fashion m
similar to that for the momen{tzEZ> the momentrE!) is lo| 0—
represented as £z,

X[$5(0)F(0)— f(0)F(0)]do. (54

(rEly= qa°z, f“ w o ol@D) Ko(|w[b) S(wéz) The final expressions farE') and(zE,) cannot be further
" 2¢N J-= lo(wb) Zm reduced without ara priori knowledge of the distribution
. L f. However, once the distributiohis chosen the integrations
Xf do o3f(02)f V1321 {(waoy1—x2) in the expressions farE;) and(zE,) have only one param-
0 -1 eter. This condition facilitates the introduction of an auxil-
iary function A¢(x), defined

X ' @ZmoXdx. (51)

» Ko(wX) _ ~
The term (+x?)*2in the integration ovex arises from the Af(X)ECAJ To(wx) g(0)[;G(0)~f(w)]dw. (59
factorr in the quantity(rE,), it is analogous to the factor
x which appears in the expression f@E,). The integration
over x may be simplified by performing one integration by
parts to yield

The factorC, is added to provide some normalization, we
shall choose

277.242

CA:W, (56)

i\ _ anZm te KO(|w|b) ~
(rEp)= 2ieoN f_w do o To(wh) 9(wézy)

Xj do Usf(Uz)f Xlo( wao1—x?)e'“zm*dx,
0 -1

(52

which favors the uniform density distribution. The image
components can be written in terms of the function

qa® b 9Q a? b
(FEN= 53 Al = | = 72— 33 Al =
Ca 2egNé&°2, ¢z 4mte €97, &z,

(57)

The integration over may now be carried ouigain, using
Appendix A to find the expression and

TABLE Il. Particle beam distributions and their correspondigx).

Distribution A¢(X).
Uniform **Ko(|wx) (3cosv 3sinaw cosw  Sincw
o lo(wX) w? w? sinaw w? > @
Parabolic 225 [+ Ky(|w|x) [3cos0 3 sinaw N sincw) (15 coss 15sinew cosw . 6 sinaw
9 J_ . lglwx) o o? 2 o’ o* w? 2 @

Hollow 1 (= Ko(|ow|x) 2

= 20 2 2__ )

81) . Ty(ox) 0 (w°—3)(w*—5)e"“ dw
Gaussian 1. .. Ko(wx)

_ 2
w’e “dw

9"~ |0(wX)
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0.1 F. Analysis of the function A¢
| ) for different distributions
0.08—
X 0.06 : Here we explore the behavior 8§ (x) for several differ-
< \ ‘ ent particle distributions to determine its dependency upon
0.04 ‘\\ . the distribution. Table Il lists the integral expressions of
0.02 N A¢(x) for the distributions originally presented in Table I.
0 B S S S The integrations were computed numerically, and their cor-
0 1 2 3 4 5 responding graphs are shown in Fig. 5. The most important

" Uniform Parabolic Hollow Gaussian
FIG. 5. Comparison of the image effects functiy(x) for four

different distributions.

. 1 qga‘z,
EE T e N

( b )_ Q 2z b
&~ amPe, 88 M &)
(58)

whereQ=qN is the total bunch charge.

E. Beam envelope equations with image effects
The expressions for momentsE,) and(zE,) are added
to the free-space momen(tsE, ) and(zE,) to form the com-
plete moments. Referring to the differential set of E2¢)

for the equivalent uniform ellipsoid, the image effects are

curves in the figure are probably those of the uniform distri-
bution, and the Gaussian distributions since they represent
the two extreme cases of the Maxwell-Boltzma(um ther-

mal) distribution. Note that from this graph it can be seen
that the image effects are most significant fsr 1, corre-
sponding to the long-bunch case wh&e R. Here the uni-
form distribution has the most significant image effects. We
see from Fig. 5 that we really do not have an equivalent
beams principle for the bunched beam case. One should use
the functionA¢(x) for the distribution closest to that of the
actual beam under study. Since many practical beams have
Maxwell-Boltzmann distributions, we can expect the func-
tion A;(x) for these beams to lie somewhere between that of
the uniform distribution and the Gaussian distribution. In the
remainder of this paper we continue the analysis using the
uniform distribution with the intent of modeling the space-
charge-dominanted situation.

included directly by adding the image components to the

space-charge terms. The result is

IV. UNIFORM DENSITY ELLIPSOID

4 - = = t is possible to derive analytic expressions for the quan-
R+ i (R s W 2 [t is possible to derive analytic expressions for the g
4\/3 R \/ER tities of interest in terms of infinite series of Bessel functions.
5 In particular, we derive an expression the functix), for
43K R b € the uniform density ellipsoid having a radial semiaaisnd
T2 Ry 72_Rr?| R® =0, an axial semiaxig,, . We list several other results of interest
(59 before proce(?din% to_the caIcuIatianA)f(?.. In parti(;]ular,
3+2K 1 7 expressions for the image potential and image charge are
2"+ k82— 7——2 W, —— derived. The expressions in this section mostly of analytic
2 Z V2R value, since all contain infinite summations of Bessel func-
5 2 tions. However, we used asymptotic expressionsAg(ix)
457°K Z A b _& =0 which were derived from Eq69) when numerically solving
2 (ZZ-R)MTN zz—mz] 72T the differential system in Eq$59).

These equations describe the envelope dynamics of the
equivalent uniform density ellipsoid inside a beam pipe.
Note, however, that these equations are dependent upon the _
particle distribution through the functiofy; . Thus, to deter- The image potentiap' in for the uniform distribution is
mine whether or not there is an equivalent distribution, wefound by substituting Eq(18) into Eq. (32), and then into
need to explore the dependencyAgfon f. Eq. (44). After integrating we have

A. Image potential and image charge

¢i(f.Z):L33[(§Zm—3Z) [2+(2+ £25)° + (£20y+ 3212+ (2 €20)?]
32,
3Q r2 z2 —Z2— &2yt 12+ (2+ £2,,) 3Q Jo(Bnr)
’ 16meoézm {(1+ 2875, fzzrzn)ln —Z+ &zt r2+(Z—§Zm)2> Ameézy i atdi(ay) Bnl2),
(60)

where the auxiliary functio,(z) is defined by
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z2 |\ 2e AntZm cosl(B,z) 2e Pnt?m cosh(B,z)— 2
(1 ) Bn2) Bn2) for ze[ — &zp, + &2

Tz Bitm | BEZ
2e Pil7 cosi B, £z,,) 2e Pl sink( B, &z
Brézn B Brézn

Bn(2)= (61)

for |z|>ézy,.

We see that the fringe fields for the image charge seem to be located areungdz,,.

The logarithmic term in Eq60) contains a singularity at=0 wheneverz e[ — £z,,,, + £z,,], since its argument approaches
zero asr approaches zero. Physically, we know that the image potential is well behaved alongutise Thus, the Bessel
summation must contain an opposing singularity to cancel that of the logarithmic term. It is possible to identify this singularity
and, consequently, obtain a numerically stable expression. The axiél)(image potential is given dagain see Allef10]
for detailg

1— oy +|1- a )I“(1 - ) °° 428?11(2_) for |z|<éz

sz 32 €z, €2y \4 Ez=2"] " iT1 aqdilay) ) )
T 16meptzm _2ﬂ+(1_ via )I (|z—§zm|> “ 4B%(2) for |2|=¢2
£ 25 \[z+ &zpl) " &1 0l ay) "

where choice of the sign in the second line depends on which side oz (+ for z>0 and— for z<0), and the two
auxiliary functionsB,(z) andB;(z) are defined

2e PnéZm cosh B,2) . 2e PnéZm cosh B,z) — 2
Bnézm Brézn ’

By(2)=
(63)

2e A7 cost Bpézy)  2e Pl sinh B,ézy)
Boézn Brézm

B3(2)=

In the long bunch limit g,,—)B,, and B_ approach zero, indicating that these quantities represent the fringe fields of the
bunch. The free-space potential for the uniform ellipsoid has previously been detefrthjn€tie may add that expression to
the above to obtain the full potential for a uniform density ellipsoid in a cylindrical pipe.

Now consider the induced surface-charge density) on the beam pipe. This quantity is found by first substituting Eq.
(18) into Eq.(32) to find p, (z) for the uniform ellipsoid. Then substitute this value into Ep), which can be integrated with
the result

7%+ 2182 2 2
—3Q 1 =z +(Bn§zm+ﬁﬁ§22§q
4mbEzy =1 an\]l(an)x 2 costBzn 2 sinBnze|

( Boitn  BEZ )e ”

)eﬁnfzm coshB,z  for |z|=<éz,

o(z)= (64)

for |z|>éz,.

This expression can be simplified somewhat by identifying some of the convergent Bessel summations in ttegabowsee
Allen [10]). Doing so yields

©

z° b2
1— +
-30 £z5, 287, ngl andi(ap)

o(2)=5———X{
(2) 8mbézy, s 4e Pl [ coshB,zm sinhanm>
S andi(an) | Bobzn  BREZL

4e” AnéZm coshB,z ( 1 1

+ for |z]<éz
Bntzn Bﬁgzzzm) "

(65

for |z|>ézp,.
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Thus, the image charges on the pipe are mostly parabolieErom Eq. (69 and the fact thatE,(0)=0 we see that
with some exponential decay. Since the Bessel series apg:(x) behaves logarithmically around=0. For large values
proaches zero in the long bunch limit, the image chargef x we see, from Eq(55), that A(x) approaches zero, so
would be parabolic in the regiome[ —¢z,,,+£z,,], and  that E,(x) behave logarithmically to cancel the negative

zero elsewhere. logarithm in Eq.(69).
B. Image effects function C. Beam envelope equations
For clarity the image effects functiof;(x) for the uni- As argued in Sec. |, for the space-charge-dominated situ-

form ellipsoid will henceforth be denoted simply A¢x). ation a bunched beam may be accurately modeled by a uni-
We now transform the expression f&fx) in Table Il to an  form ellipsoid. Mathematically this is represented by the sys-
infinite summation representation. This is accomplished byem described by Eq$59), (16), (17), and(69). We collect
using Parseval's theorefii4], and realizing the following these results below for convenience.

fact:

o) . R4 (DR~ K1 (2 )
~ 1 O ) Ky
1 A - - -
FHKO0 ez~ 5 | 5 otz PCL AT
x 'z = R A(R,Z 65_0
erde 2 - AR TR0
1 47eg (72)
= T¢(OZ) (66)
™4 ez 30K z
Thus, in general, the functiof;(x) may be expressed as ol 2 7277 J2R
b LK 2 A(RZ) <,
Af(X)ZCfJ7 [k(0.0)? §(@0&Zp)if, 1[6(w)— 3f(w)]do, 2 (ZZ-R)FTT B

(67) where the new representation for the image func#oris

.~ iven as
where the notatlork(o,w)g means to replace all occurrences 9

of b in ’IZ(O,w) with x. Note that the substitution operators

|> and | commute with the integration. An application of b for Z>R
Parseval's theorem to the factors in square brackets trans- A(R,Z)= A JZ2—R? ° (72)
forms the above to
0 for Z<R.
Ar(X) = — 4meo c f [41(02)2%, ] The above result is taken from E¢69), and the fact that
f qa’zy, ! XUz image effects are negligible whenev&r R. Once a table of
values forA(x) is constructedfor interpolation, this system
X[39(Z%) — 2?1 (2?)]dz (68) may be easily integrated using standard numerical tech-

nigues.
Note that this is a general expression and is valid for all
distributions, hence the notatigk(x). Now we concentrate
on the uniform distribution. ) . .
Into the above equation we substitute Eg@) for ¢' and ~To illustrate the utility of these results, we simulated a
insert the expressions di(z2) and g(z2) for the uniform simple transport system for bunched_partlcle k_)eams. '_I'he
distribution. This action leaves us with an integral expressiorffl@1SPort system has uniform focusing in the radial direction

for A(x) which may be evaluated analytically. The result is and period focusing in the longitudinal direction. The focus-
ing functions for both directions is shown in Figiah Note

that we have used a “hard-edge” approximation for the

D. A simple example

6l @ X — function «,(Z). The period ofk,({) is 25 cm, the pulse
ACO=" 72557 15" 7] T27Ea00, 69 length being 5 cm, with a maximum value 200 The
constant value ofk,({) is 100 m2 The beam parameters
where the functiorE 5(x) is defined are given as followsK=0.01, ,=5x10 ° mrad, €,=2
X 10 ° mrad, andy=1.
o 1 « 2\ x . '!'he functionA(x). was c.onstructed by numerically com-
EAX)=2 —— | — _2>(_ sinh— puting values forx in the interval[0.3,6.3. These values
n=1 apdi(an) \an  ap/lan X were tabulated in order to interpolaféx) for all the values
352 w33 of x in this range. Asymptotic expressions derived from Eq.

-— cosh?n+—3sinh%> e~ /X (70) (62)3were used forx<0.3, and we tookA(x)=0 for x
>6.3.

n
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equivalent uniform beam has the same second moments, or

T 300 rms beam envelopes, of the actual beam. This system is rep-
: 250 , resented by Eqs(24), (16), and (17). When a cylindrical
7 200 beam pipe is present we represent the image effects in the
¥ 150 dynamics equations by the image effects funcg(x), de-
S 100 fined in Eq.(55). This function is plotted in Fig. 5 for four
v 50 different distributions. In general the functiég(x) must be
0 computed numerically, say from the integral expressions
0 0.2 0.4 0.6 0.8 1 listed in Table Il. In the case of the uniform ellipsoid we
¢ have derived an analytic expression involving infinite sum-
a) mations of Bessel functions fak;(x), which we denote as
g 0.07 A(x) for clarity. That expression is given by E9). The
T 0.06 differential system with images is described by E@4) and
v 0.05 ' (72), where the auxiliary functions are given by Eq%6),
N 0.04 (17), and(69).
S 0-03 Qualitatively we can make a few generalizations. The
= 0-02 beam dynamics are relatively insensitive to the exact form of
0.01 Lo . . K . .
o the distribution in the free-space situation. In this case we
0 0.2 0.4 0.6 0.8 1 can justify the use of an equivalent uniform beam, which we
4 take to be the uniform density ellipsoid, since it has well-
b defined beam envelopes. That is we can model any bunched
= 0.07 beam as a uniform density ellipsoid so long as the uniform
g 0.06 beam has the same second spatial moments as the actual
G 0.05 beam. On the other hand, when image effects become a fac-
N 0.04 N4 tor in the beam dynamics, the distribution’s form becomes
~0.03 I R S important. In the presence of images, we no longer have the
f;’ 0.02 convenience of an equivalent uniform beam. As mentioned
0.01 above, the image effects functigh(x) depends upon the
° 6 0.2 0.4 0.6 o.8 1 form of the beam’s distribution.
’ T ’ The most useful application of these results would seem
to be for the case of space-charge-dominated beams, where
° the stationary distribution is close to a uniform density ellip-

soid. In this case the longitudinal image effects from a cy-

FIG. 6. Example solutionga) the focusing functions(b) the  lindrical beam pipe would be pronounced due to the large
matched beam solution for the free-space situation, @hdhe  space charge. Since the uniform ellipsoid is “approximately
matched beam solution with image effects. stationary” and the dynamics are not sensitive to the beam
emittances in the first place, the analysis will be accurate. A

Th hed b lution in f is sh in Fi complete set of ordinary differential equations has been de-
e matched beam solution In free space Is snown in Fig e for the uniform density ellipsoid. Once the values of

6(2).’ thﬂesthe matﬁhed peg_m solu\t}\?nhincluging a pipe_: WithA(x) are tabulated, the differential equations can be easily
radiusb=>5 cm is shown in Fig. &). Without the beam pipe, integrated by standard numerical techniques. Thus, we have

the minimum radial and longitudinal matched beam enve- ; ; ;
. ; a convenient method to simulate the behavior of such beams.
lopes areRy=1.94 cm andZy=4.54 cm, respectively. With

the beam pipe the values arB;,=2.39 cm and Z,

=3.43 cm. Obviously, the pipe has a substantial effect on ACKNOWLEDGMENT

the beam dynamics in this case. As we expect, the image This work was supported in part by the U. S. Department
forces have a focusing effect in the longitudinal direction and,y Energy.

a defocusing effect in the radial direction. Also note the cou-

pling between the radial and longitudinal motions. Both

planes oscillate synchronously, in phase with the longitudi- APPENDIX A: INTEGRALS

nal envelope equation, as they travel down the beam axis.

1
V. CONCLUSIONS fo cosaxlo(by1—x)dx
It is possible to write a relatively simple set of coupled sinh\/Ez—_az
ordinary differential equations for the rms beam envelopes of _— for a<b
an axisymmetric, bunched beam with ellipsoidal symmetry. Vb*—a?
In the free-space situation we have the differential system sinyaZ—b?
given by Egs.(14), (16), and(17). These equations may be z—bzzsmc‘/az_bz for a>b,

translated to those describing the true beam envelopes of an a”—
(approximately equivalent uniform density bunched beam,
which we take to be the uniform density ellipsoid. The from Oberhettingef15], and
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sinhyb%—a?

b2_a2

a

m (COS|Nb —a —

a sinya?—b?
a’-b* | Ja?—p?

) for a<b
1
Jo X sirl(a\/l—xz)lo(bx)dx=

cos\/az—b2> for a>b,
from above[16], and

sinhyb?—a?
JbZ—a?

—cos\/az—bz) for a>b.

a
e ( cosh/b?—a?

a sinyaZ—b?
a?—b? [a2—p2

) for a<b

flx sin axly(by1—x%)dx= flx sin(ay1—x?)lo(bx)dx=
0 0

APPENDIX B: FOURIER TRANSFORMS

1 [+ .
. . . f(X)=5— f f(w)e'““dw.
For a functionf, the Fourier transform will be denoted by 2w ) o

T fi he following:
and defined by the following We also introduce the “sinc” function which occurs fre-

- +oo _ quently in Fourier analysis. The common definition is
f(w)=f f(x)e '“*dx.
— sinx
) —, Xx#0
The original functionf may be recovered from its transform sinx=4y X
by the inversion formula 1, x=0.

Listed below are several functions of the independent varialaled their corresponding Fourier transforms in the variable
w.

£(x) f(w)
1 for |x<a 2a sinc@aw
0 for|x|>a
X . _ 2i .
5 for Ix|<a — [cosw—sin@a]
0 for [x>a
X2 4conw 4sin@w .
— for |x<a 5 ~— +2a sinAw
a aw aw
0 for [x>a
=% tor X< 2l

a2 for |X<a a—wz[smcaw CoKAw]
0 for |x|>a
L % X3~I— x° f 2,0
30 8 12" 160 O Xcl720
1 x2 x2 x? cosw sincw)[3cosw 3 sinaw
30 812 160 O X<[0F2] ( o w? )( o  w’+sinow
0 for [x>2
14 1 1
- —Bnld — |1
b2 Ty & io(ap) 7

* lo(wr

11 1 Jo(Bnl) o Fnld Kol o|b) olwr) (18]

E,/r2+22_ Bn:l anJl(an) IO(wb)

In the last two transformg,,= «, /b, whereq,, is thenth zero of the Bessel functiody .



55 BUNCHED BEAM ENVELOPE EQUATIONS INCLUDING . .. 7605

[1] O. D. Kellogg, Foundations of Potential Theorover, New Sacherer in Refl5].
York, 1953, pp. 192-194. [13] The derivation is similar to that done for the Helmholtz equa-
[2] R. L. Gluckstern, Fermilab Internal Report No. TM-1402, tion by |. Stakgold,Green’s Function and Boundary Value
1986 (unpublishedl Problems(Wiley, New York, 1979, pp. 459-462.
[3] T. D. Newton, Can. J. Phyd€4, 3137(1966. [14] For a broad description of Fourier transform properties see R.
[4] D. Neuffer, IEEE Trans. Nucl. ScNS-26 3031(1979. N. Bracewell,Fourier Transform and its Applicatigr2nd ed.
[5] C. K. Allen, N. Brown, and M. Reiser, Part. Acce45, 149 (McGraw-Hill, New York, 1978.
(19949. [15] F. Oberhettinger;Table of Fourier Transforms and Fourier
[6] C. K. Allen and M. Reiser, Phys. Rev. ¥, 2884(1996. Transforms of Distribution§Springer-Verlag, Berlin, 1990p.
[7] C. K. Allen and M. Reiser, Part. Accel8, 193(1995. 95.
[8] F. R. Sacherer, IEEE Trans. Nucl. SkiS-18 1105(1971). [16] This integral can be derived from formula 6.738-1 of I. S.
[9] I. M. Kapchinskij and V. V. Vladimirskij,Proceedings of the Gradshteyn and I. M. RyzhikTable of Integrals, Series and
International Conference on High-Energy Accelerators and Products 5th ed.(Academic, New York, 1994 p. 776. It may
InstrumentationCERN, Geneva, 1959pp. 274—-288. also be derived by differentiation the previous integral with

[10] For details of these derivations, see C. K. Allen, Ph.D. dissera-  respect taa.
tion, University of Maryland, 1996, Secs, 1.4.4, 3.7.3, and[17] This transform is computed directly using the residue theorem,

3.8.3. for details of this calculation see R¢fl0], Sec. 3.5.4.
[11] Martin Reiser,Theory and Design of Charged Particle Beams [18] This transform is computed by comparing the two alternate
(Wiley, New York, 1994, Sec. 4.4. expression for the Green'’s function; for details of this calcula-

[12] These equations are found using a derivation similar to that of  tion, see Ref[10], Sec. 3.5.4.



